]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Make the _C(), _A(), and _b() methods for games public.
[dunshire.git] / dunshire / games.py
index 130176b63bf9a276541609ad70b25f2c0b7a7d79..672810de8094df7c37005cd5106fe5b8175888c4 100644 (file)
@@ -335,12 +335,12 @@ class SymmetricLinearGame:
               '  e1 = {:s},\n' \
               '  e2 = {:s},\n' \
               '  Condition((L, K, e1, e2)) = {:f}.'
-        indented_L = '\n      '.join(str(self._L).splitlines())
-        indented_e1 = '\n       '.join(str(self._e1).splitlines())
-        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+        indented_L = '\n      '.join(str(self.L()).splitlines())
+        indented_e1 = '\n       '.join(str(self.e1()).splitlines())
+        indented_e2 = '\n       '.join(str(self.e2()).splitlines())
 
         return tpl.format(indented_L,
-                          str(self._K),
+                          str(self.K()),
                           indented_e1,
                           indented_e2,
                           self.condition())
@@ -581,7 +581,7 @@ class SymmetricLinearGame:
         return matrix(0, (self.dimension(), 1), tc='d')
 
 
-    def _A(self):
+    def A(self):
         """
         Return the matrix ``A`` used in our CVXOPT construction.
 
@@ -609,12 +609,12 @@ class SymmetricLinearGame:
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._A())
+            >>> print(SLG.A())
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
         """
-        return matrix([0, self._e2], (1, self.dimension() + 1), 'd')
+        return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
 
 
 
@@ -657,7 +657,7 @@ class SymmetricLinearGame:
         """
         identity_matrix = identity(self.dimension())
         return append_row(append_col(self._zero(), -identity_matrix),
-                          append_col(self._e1, -self._L))
+                          append_col(self.e1(), -self.L()))
 
 
     def _c(self):
@@ -698,7 +698,7 @@ class SymmetricLinearGame:
         return matrix([-1, self._zero()])
 
 
-    def _C(self):
+    def C(self):
         """
         Return the cone ``C`` used in our CVXOPT construction.
 
@@ -720,7 +720,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._C())
+            >>> print(SLG.C())
             Cartesian product of dimension 6 with 2 factors:
               * Nonnegative orthant in the real 3-space
               * Nonnegative orthant in the real 3-space
@@ -770,7 +770,7 @@ class SymmetricLinearGame:
 
 
     @staticmethod
-    def _b():
+    def b():
         """
         Return the ``b`` vector used in our CVXOPT construction.
 
@@ -801,7 +801,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._b())
+            >>> print(SLG.b())
             [1.0000000]
             <BLANKLINE>
 
@@ -887,61 +887,59 @@ class SymmetricLinearGame:
             >>> SLG.solution().game_value() < -ABS_TOL
             True
 
-        Tests
-        -----
-
         The following two games are problematic numerically, but we
         should be able to solve them::
 
-        >>> from dunshire import *
-        >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
-        ...      [ 1.30481749924621448500, 1.65278664543326403447]]
-        >>> K = NonnegativeOrthant(2)
-        >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
-        >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
-        >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> print(SLG.solution())
-        Game value: 18.767...
-        Player 1 optimal:
-          [-0.000...]
-          [ 9.766...]
-        Player 2 optimal:
-          [1.047...]
-          [0.000...]
+            >>> from dunshire import *
+            >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+            ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+            >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 18.767...
+            Player 1 optimal:
+              [-0.000...]
+              [ 9.766...]
+            Player 2 optimal:
+              [1.047...]
+              [0.000...]
 
         ::
 
-        >>> from dunshire import *
-        >>> L = [[1.54159395026049472754, 2.21344728574316684799],
-        ...      [1.33147433507846657541, 1.17913616272988108769]]
-        >>> K = NonnegativeOrthant(2)
-        >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
-        >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
-        >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> print(SLG.solution())
-        Game value: 24.614...
-        Player 1 optimal:
-          [ 6.371...]
-          [-0.000...]
-        Player 2 optimal:
-          [2.506...]
-          [0.000...]
+            >>> from dunshire import *
+            >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+            ...      [1.33147433507846657541, 1.17913616272988108769]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+            >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 24.614...
+            Player 1 optimal:
+              [ 6.371...]
+              [-0.000...]
+            Player 2 optimal:
+              [2.506...]
+              [0.000...]
 
         """
         try:
-            opts = {'show_progress': options.VERBOSE}
+            opts = {'show_progress': False}
             soln_dict = solvers.conelp(self._c(),
                                        self._G(),
                                        self._h(),
-                                       self._C().cvxopt_dims(),
-                                       self._A(),
-                                       self._b(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
                                        options=opts)
         except ValueError as error:
             if str(error) == 'math domain error':
                 # Oops, CVXOPT tried to take the square root of a
                 # negative number. Report some details about the game
                 # rather than just the underlying CVXOPT crash.
+                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
                 raise PoorScalingException(self)
             else:
                 raise error
@@ -966,6 +964,7 @@ class SymmetricLinearGame:
         # that CVXOPT is convinced the problem is infeasible (and that
         # cannot happen).
         if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
         # The "optimal" and "unknown" results, we actually treat the
@@ -979,11 +978,13 @@ class SymmetricLinearGame:
         # it) because otherwise CVXOPT might return "unknown" and give
         # us two points in the cone that are nowhere near optimal.
         if abs(p1_value - p2_value) > 2*options.ABS_TOL:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
         # And we also check that the points it gave us belong to the
         # cone, just in case...
         if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
         # For the game value, we could use any of:
@@ -997,7 +998,7 @@ class SymmetricLinearGame:
         # makes the most sense to just use that, even if it means we
         # can't test the fact that p1_value/p2_value are close to the
         # payoff.
-        payoff = self.payoff(p1_optimal,p2_optimal)
+        payoff = self.payoff(p1_optimal, p2_optimal)
         return Solution(payoff, p1_optimal, p2_optimal)
 
 
@@ -1035,7 +1036,7 @@ class SymmetricLinearGame:
         True
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self._G()) + condition_number(self.A()))/2
 
 
     def dual(self):
@@ -1071,10 +1072,10 @@ class SymmetricLinearGame:
               Condition((L, K, e1, e2)) = 44.476...
 
         """
-        # We pass ``self._L`` right back into the constructor, because
+        # We pass ``self.L()`` right back into the constructor, because
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
-        return SymmetricLinearGame(self._L,
-                                   self._K,
-                                   self._e2,
-                                   self._e1)
+        return SymmetricLinearGame(self.L(),
+                                   self.K(),
+                                   self.e2(),
+                                   self.e1())