]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Replace _try_solution() with something more reliable and update tests.
[dunshire.git] / dunshire / games.py
index 2d6d6dae8d75352e4876954ba0cc2eff454c67f7..130176b63bf9a276541609ad70b25f2c0b7a7d79 100644 (file)
@@ -809,29 +809,10 @@ class SymmetricLinearGame:
         return matrix([1], tc='d')
 
 
-    def _try_solution(self, tolerance):
-        """
-        Solve this linear game within ``tolerance``, if possible.
-
-        This private function is the one that does all of the actual
-        work for :meth:`solution`. This method accepts a ``tolerance``,
-        and what :meth:`solution` does is call this method twice with
-        two different tolerances. First it tries a strict tolerance, and
-        then it tries a looser one.
-
-        .. warning::
-
-            If you try to be smart and precompute the matrices used by
-            this function (the ones passed to ``conelp``), then you're
-            going to shoot yourself in the foot. CVXOPT can and will
-            clobber some (but not all) of its input matrices. This isn't
-            performance sensitive, so play it safe.
 
-        Parameters
-        ----------
-
-        tolerance : float
-            The absolute tolerance to pass to the CVXOPT solver.
+    def solution(self):
+        """
+        Solve this linear game and return a :class:`Solution`.
 
         Returns
         -------
@@ -853,53 +834,102 @@ class SymmetricLinearGame:
         Examples
         --------
 
-        This game can be solved easily, so the first attempt in
-        :meth:`solution` should succeed::
+        This example is computed in Gowda and Ravindran in the section
+        "The value of a Z-transformation"::
 
             >>> from dunshire import *
-            >>> from dunshire.matrices import norm
-            >>> from dunshire.options import ABS_TOL
             >>> K = NonnegativeOrthant(3)
             >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> s1 = SLG.solution()
-            >>> s2 = SLG._try_solution(options.ABS_TOL)
-            >>> abs(s1.game_value() - s2.game_value()) < ABS_TOL
-            True
-            >>> norm(s1.player1_optimal() - s2.player1_optimal()) < ABS_TOL
-            True
-            >>> norm(s1.player2_optimal() - s2.player2_optimal()) < ABS_TOL
-            True
+            >>> print(SLG.solution())
+            Game value: -6.1724138
+            Player 1 optimal:
+              [ 0.551...]
+              [-0.000...]
+              [ 0.448...]
+            Player 2 optimal:
+              [0.448...]
+              [0.000...]
+              [0.551...]
 
-        This game cannot be solved with the default tolerance, but it
-        can be solved with a weaker one::
+        The value of the following game can be computed using the fact
+        that the identity is invertible::
 
             >>> from dunshire import *
-            >>> from dunshire.options import ABS_TOL
-            >>> L = [[ 0.58538005706658102767,  1.53764301129883040886],
-            ...      [-1.34901059721452210027,  1.50121179114155500756]]
-            >>> K = NonnegativeOrthant(2)
-            >>> e1 = [1.04537193228494995623, 1.39699624965841895374]
-            >>> e2 = [0.35326554172108337593, 0.11795703527854853321]
-            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
-            >>> print(SLG._try_solution(ABS_TOL / 10))
-            Traceback (most recent call last):
-            ...
-            dunshire.errors.GameUnsolvableException: Solution failed...
-            >>> print(SLG._try_solution(ABS_TOL))
-            Game value: 9.1100945
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,0,0],[0,1,0],[0,0,1]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [4,5,6]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 0.0312500
             Player 1 optimal:
-              [-0.0000000]
-              [ 8.4776631]
+              [0.031...]
+              [0.062...]
+              [0.093...]
             Player 2 optimal:
-              [0.0000000]
-              [0.7158216]
+              [0.125...]
+              [0.156...]
+              [0.187...]
+
+        This is another Gowda/Ravindran example that is supposed to have
+        a negative game value::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> L = [[1, -2], [-2, 1]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1, 1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.solution().game_value() < -ABS_TOL
+            True
+
+        Tests
+        -----
+
+        The following two games are problematic numerically, but we
+        should be able to solve them::
+
+        >>> from dunshire import *
+        >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+        ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+        >>> K = NonnegativeOrthant(2)
+        >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+        >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+        >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+        >>> print(SLG.solution())
+        Game value: 18.767...
+        Player 1 optimal:
+          [-0.000...]
+          [ 9.766...]
+        Player 2 optimal:
+          [1.047...]
+          [0.000...]
+
+        ::
+
+        >>> from dunshire import *
+        >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+        ...      [1.33147433507846657541, 1.17913616272988108769]]
+        >>> K = NonnegativeOrthant(2)
+        >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+        >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+        >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+        >>> print(SLG.solution())
+        Game value: 24.614...
+        Player 1 optimal:
+          [ 6.371...]
+          [-0.000...]
+        Player 2 optimal:
+          [2.506...]
+          [0.000...]
 
         """
         try:
-            opts = {'show_progress': options.VERBOSE, 'abstol': tolerance}
+            opts = {'show_progress': options.VERBOSE}
             soln_dict = solvers.conelp(self._c(),
                                        self._G(),
                                        self._h(),
@@ -930,112 +960,45 @@ class SymmetricLinearGame:
         # The "status" field contains "optimal" if everything went
         # according to plan. Other possible values are "primal
         # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
+        # we didn't get a solution.
+        #
+        # The "infeasible" ones are the worst, since they indicate
+        # that CVXOPT is convinced the problem is infeasible (and that
+        # cannot happen).
         if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
             raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > tolerance:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
-
 
-    def solution(self):
-        """
-        Solve this linear game and return a :class:`Solution`.
-
-        Returns
-        -------
-
-        :class:`Solution`
-            A :class:`Solution` object describing the game's value and
-            the optimal strategies of both players.
-
-        Raises
-        ------
-        GameUnsolvableException
-            If the game could not be solved (if an optimal solution to its
-            associated cone program was not found).
-
-        PoorScalingException
-            If the game could not be solved because CVXOPT crashed while
-            trying to take the square root of a negative number.
-
-        Examples
-        --------
-
-        This example is computed in Gowda and Ravindran in the section
-        "The value of a Z-transformation"::
-
-            >>> from dunshire import *
-            >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
-            >>> e1 = [1,1,1]
-            >>> e2 = [1,1,1]
-            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG.solution())
-            Game value: -6.1724138
-            Player 1 optimal:
-              [ 0.551...]
-              [-0.000...]
-              [ 0.448...]
-            Player 2 optimal:
-              [0.448...]
-              [0.000...]
-              [0.551...]
-
-        The value of the following game can be computed using the fact
-        that the identity is invertible::
+        # The "optimal" and "unknown" results, we actually treat the
+        # same. Even if CVXOPT bails out due to numerical difficulty,
+        # it will have some candidate points in mind. If those
+        # candidates are good enough, we take them. We do the same
+        # check (perhaps pointlessly so) for "optimal" results.
+        #
+        # First we check that the primal/dual objective values are
+        # close enough (one could be low by ABS_TOL, the other high by
+        # it) because otherwise CVXOPT might return "unknown" and give
+        # us two points in the cone that are nowhere near optimal.
+        if abs(p1_value - p2_value) > 2*options.ABS_TOL:
+            raise GameUnsolvableException(self, soln_dict)
 
-            >>> from dunshire import *
-            >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,0,0],[0,1,0],[0,0,1]]
-            >>> e1 = [1,2,3]
-            >>> e2 = [4,5,6]
-            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG.solution())
-            Game value: 0.0312500
-            Player 1 optimal:
-              [0.031...]
-              [0.062...]
-              [0.093...]
-            Player 2 optimal:
-              [0.125...]
-              [0.156...]
-              [0.187...]
+        # And we also check that the points it gave us belong to the
+        # cone, just in case...
+        if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            raise GameUnsolvableException(self, soln_dict)
 
-        """
-        try:
-            # First try with a stricter tolerance. Who knows, it might
-            # work. If it does, we prefer that solution.
-            return self._try_solution(options.ABS_TOL / 10)
-
-        except (PoorScalingException, GameUnsolvableException):
-            # Ok, that didn't work. Let's try it with the default tolerance..
-            try:
-                return self._try_solution(options.ABS_TOL / 10)
-            except (PoorScalingException, GameUnsolvableException) as error:
-                # Well, that didn't work either. Let's verbosify the matrix
-                # output format before we allow the exception to be raised.
-                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
-                raise error
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal,p2_optimal)
+        return Solution(payoff, p1_optimal, p2_optimal)
 
 
     def condition(self):