]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Rename epsilon_scale() to tolerance_scale().
[dunshire.git] / dunshire / games.py
index 71da5edbc561de3608e324c309c8ea3914213ce1..07a70b0a2b651a40c207d5d3bcdfd807d55f92df 100644 (file)
@@ -4,15 +4,15 @@ Symmetric linear games and their solutions.
 This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
-
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
 from .matrices import (append_col, append_row, condition_number, identity,
-                       inner_product)
-from . import options
+                       inner_product, norm, specnorm)
+from .options import ABS_TOL, FLOAT_FORMAT, DEBUG_FLOAT_FORMAT
+
+printing.options['dformat'] = FLOAT_FORMAT
 
-printing.options['dformat'] = options.FLOAT_FORMAT
 
 class Solution:
     """
@@ -23,7 +23,7 @@ class Solution:
     --------
 
         >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
-        Game value: 10.0000000
+        Game value: 10.000...
         Player 1 optimal:
           [ 1]
           [ 2]
@@ -323,6 +323,8 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
+        # Initial value of cached method.
+        self._L_specnorm_value = None
 
 
     def __str__(self):
@@ -581,7 +583,7 @@ class SymmetricLinearGame:
         return matrix(0, (self.dimension(), 1), tc='d')
 
 
-    def _A(self):
+    def A(self):
         """
         Return the matrix ``A`` used in our CVXOPT construction.
 
@@ -609,7 +611,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._A())
+            >>> print(SLG.A())
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
@@ -698,7 +700,7 @@ class SymmetricLinearGame:
         return matrix([-1, self._zero()])
 
 
-    def _C(self):
+    def C(self):
         """
         Return the cone ``C`` used in our CVXOPT construction.
 
@@ -720,7 +722,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._C())
+            >>> print(SLG.C())
             Cartesian product of dimension 6 with 2 factors:
               * Nonnegative orthant in the real 3-space
               * Nonnegative orthant in the real 3-space
@@ -770,7 +772,7 @@ class SymmetricLinearGame:
 
 
     @staticmethod
-    def _b():
+    def b():
         """
         Return the ``b`` vector used in our CVXOPT construction.
 
@@ -801,7 +803,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._b())
+            >>> print(SLG.b())
             [1.0000000]
             <BLANKLINE>
 
@@ -809,6 +811,57 @@ class SymmetricLinearGame:
         return matrix([1], tc='d')
 
 
+    def player1_start(self):
+        """
+        Return a feasible starting point for player one.
+
+        This starting point is for the CVXOPT formulation and not for
+        the original game. The basic premise is that if you normalize
+        :meth:`e2`, then you get a point in :meth:`K` that makes a unit
+        inner product with :meth:`e2`. We then get to choose the primal
+        objective function value such that the constraint involving
+        :meth:`L` is satisfied.
+        """
+        p = self.e2() / (norm(self.e2()) ** 2)
+        dist = self.K().ball_radius(self.e1())
+        nu = - self._L_specnorm()/(dist*norm(self.e2()))
+        x = matrix([nu, p], (self.dimension() + 1, 1))
+        s = - self._G()*x
+
+        return {'x': x, 's': s}
+
+
+    def player2_start(self):
+        """
+        Return a feasible starting point for player two.
+        """
+        q = self.e1() / (norm(self.e1()) ** 2)
+        dist = self.K().ball_radius(self.e2())
+        omega = self._L_specnorm()/(dist*norm(self.e1()))
+        y = matrix([omega])
+        z2 = q
+        z1 = y*self.e2() - self.L().trans()*z2
+        z = matrix([z1, z2], (self.dimension()*2, 1))
+
+        return {'y': y, 'z': z}
+
+
+    def _L_specnorm(self):
+        """
+        Compute the spectral norm of ``L`` and cache it.
+        """
+        if self._L_specnorm_value is None:
+            self._L_specnorm_value = specnorm(self.L())
+        return self._L_specnorm_value
+
+    def tolerance_scale(self, solution):
+        # Don't return anything smaller than 1... we can't go below
+        # out "minimum tolerance."
+        norm_p1_opt = norm(solution.player1_optimal())
+        norm_p2_opt = norm(solution.player2_optimal())
+        scale = self._L_specnorm()*(norm_p1_opt + norm_p2_opt)
+        return max(1, scale/2.0)
+
 
     def solution(self):
         """
@@ -844,11 +897,11 @@ class SymmetricLinearGame:
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: -6.1724138
+            Game value: -6.172...
             Player 1 optimal:
-              [ 0.551...]
-              [-0.000...]
-              [ 0.448...]
+              [0.551...]
+              [0.000...]
+              [0.448...]
             Player 2 optimal:
               [0.448...]
               [0.000...]
@@ -864,7 +917,7 @@ class SymmetricLinearGame:
             >>> e2 = [4,5,6]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
             >>> print(SLG.solution())
-            Game value: 0.0312500
+            Game value: 0.031...
             Player 1 optimal:
               [0.031...]
               [0.062...]
@@ -900,8 +953,8 @@ class SymmetricLinearGame:
             >>> print(SLG.solution())
             Game value: 18.767...
             Player 1 optimal:
-              [-0.000...]
-              [ 9.766...]
+              [0.000...]
+              [9.766...]
             Player 2 optimal:
               [1.047...]
               [0.000...]
@@ -918,28 +971,68 @@ class SymmetricLinearGame:
             >>> print(SLG.solution())
             Game value: 24.614...
             Player 1 optimal:
-              [ 6.371...]
-              [-0.000...]
+              [6.371...]
+              [0.000...]
             Player 2 optimal:
               [2.506...]
               [0.000...]
 
+        This is another one that was difficult numerically, and caused
+        trouble even after we fixed the first two::
+
+            >>> from dunshire import *
+            >>> L = [[57.22233908627052301199, 41.70631373437460354126],
+            ...      [83.04512571985074487202, 57.82581810406928468637]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [7.31887017043399268346, 0.89744171905822367474]
+            >>> e2 = [0.11099824781179848388, 6.12564670639315345113]
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> print(SLG.solution())
+            Game value: 70.437...
+            Player 1 optimal:
+              [9.009...]
+              [0.000...]
+            Player 2 optimal:
+              [0.136...]
+              [0.000...]
+
+        And finally, here's one that returns an "optimal" solution, but
+        whose primal/dual objective function values are far apart::
+
+            >>> from dunshire import *
+            >>> L = [[ 6.49260076597376212248, -0.60528030227678542019],
+            ...      [ 2.59896077096751731972, -0.97685530240286766457]]
+            >>> K = IceCream(2)
+            >>> e1 = [1, 0.43749513972645248661]
+            >>> e2 = [1, 0.46008379832200291260]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 11.596...
+            Player 1 optimal:
+              [ 1.852...]
+              [-1.852...]
+            Player 2 optimal:
+              [ 1.777...]
+              [-1.777...]
+
         """
         try:
             opts = {'show_progress': False}
             soln_dict = solvers.conelp(self._c(),
                                        self._G(),
                                        self._h(),
-                                       self._C().cvxopt_dims(),
-                                       self._A(),
-                                       self._b(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
+                                       primalstart=self.player1_start(),
+                                       dualstart=self.player2_start(),
                                        options=opts)
         except ValueError as error:
             if str(error) == 'math domain error':
                 # Oops, CVXOPT tried to take the square root of a
                 # negative number. Report some details about the game
                 # rather than just the underlying CVXOPT crash.
-                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+                printing.options['dformat'] = DEBUG_FLOAT_FORMAT
                 raise PoorScalingException(self)
             else:
                 raise error
@@ -964,9 +1057,23 @@ class SymmetricLinearGame:
         # that CVXOPT is convinced the problem is infeasible (and that
         # cannot happen).
         if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        soln = Solution(payoff, p1_optimal, p2_optimal)
+
         # The "optimal" and "unknown" results, we actually treat the
         # same. Even if CVXOPT bails out due to numerical difficulty,
         # it will have some candidate points in mind. If those
@@ -977,29 +1084,18 @@ class SymmetricLinearGame:
         # close enough (one could be low by ABS_TOL, the other high by
         # it) because otherwise CVXOPT might return "unknown" and give
         # us two points in the cone that are nowhere near optimal.
-        if abs(p1_value - p2_value) > 2*options.ABS_TOL:
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+        #
+        if abs(p1_value - p2_value) > self.tolerance_scale(soln)*ABS_TOL:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
         # And we also check that the points it gave us belong to the
         # cone, just in case...
         if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
-        # For the game value, we could use any of:
-        #
-        #   * p1_value
-        #   * p2_value
-        #   * (p1_value + p2_value)/2
-        #   * the game payoff
-        #
-        # We want the game value to be the payoff, however, so it
-        # makes the most sense to just use that, even if it means we
-        # can't test the fact that p1_value/p2_value are close to the
-        # payoff.
-        payoff = self.payoff(p1_optimal, p2_optimal)
-        return Solution(payoff, p1_optimal, p2_optimal)
+        return soln
 
 
     def condition(self):
@@ -1030,13 +1126,11 @@ class SymmetricLinearGame:
         >>> e1 = [1]
         >>> e2 = e1
         >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> actual = SLG.condition()
-        >>> expected = 1.8090169943749477
-        >>> abs(actual - expected) < options.ABS_TOL
-        True
+        >>> SLG.condition()
+        1.809...
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self._G()) + condition_number(self.A()))/2
 
 
     def dual(self):