]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Rename epsilon_scale() to tolerance_scale().
[dunshire.git] / dunshire / games.py
index 0a473915716de7f4be4ce7d99cbc64d87c960795..07a70b0a2b651a40c207d5d3bcdfd807d55f92df 100644 (file)
@@ -4,16 +4,15 @@ Symmetric linear games and their solutions.
 This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
-from math import sqrt
-
 from cvxopt import matrix, printing, solvers
-from .cones import CartesianProduct, IceCream, NonnegativeOrthant
+from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
 from .matrices import (append_col, append_row, condition_number, identity,
                        inner_product, norm, specnorm)
-from . import options
+from .options import ABS_TOL, FLOAT_FORMAT, DEBUG_FLOAT_FORMAT
+
+printing.options['dformat'] = FLOAT_FORMAT
 
-printing.options['dformat'] = options.FLOAT_FORMAT
 
 class Solution:
     """
@@ -324,6 +323,8 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
+        # Initial value of cached method.
+        self._L_specnorm_value = None
 
 
     def __str__(self):
@@ -822,25 +823,9 @@ class SymmetricLinearGame:
         :meth:`L` is satisfied.
         """
         p = self.e2() / (norm(self.e2()) ** 2)
-
-        # Compute the distance from p to the outside of K.
-        if isinstance(self.K(), NonnegativeOrthant):
-            # How far is it to a wall?
-            dist = min(list(self.e1()))
-        elif isinstance(self.K(), IceCream):
-            # How far is it to the boundary of the ball that defines
-            # the ice-cream cone at a given height? Now draw a
-            # 45-45-90 triangle and the shortest distance to the
-            # outside of the cone should be 1/sqrt(2) of that.
-            # It works in R^2, so it works everywhere, right?
-            height = self.e1()[0]
-            radius = norm(self.e1()[1:])
-            dist = (height - radius) / sqrt(2)
-        else:
-            raise NotImplementedError
-
-        nu = - specnorm(self.L())/(dist*norm(self.e2()))
-        x = matrix([nu,p], (self.dimension() + 1, 1))
+        dist = self.K().ball_radius(self.e1())
+        nu = - self._L_specnorm()/(dist*norm(self.e2()))
+        x = matrix([nu, p], (self.dimension() + 1, 1))
         s = - self._G()*x
 
         return {'x': x, 's': s}
@@ -851,32 +836,33 @@ class SymmetricLinearGame:
         Return a feasible starting point for player two.
         """
         q = self.e1() / (norm(self.e1()) ** 2)
-
-        # Compute the distance from p to the outside of K.
-        if isinstance(self.K(), NonnegativeOrthant):
-            # How far is it to a wall?
-            dist = min(list(self.e2()))
-        elif isinstance(self.K(), IceCream):
-            # How far is it to the boundary of the ball that defines
-            # the ice-cream cone at a given height? Now draw a
-            # 45-45-90 triangle and the shortest distance to the
-            # outside of the cone should be 1/sqrt(2) of that.
-            # It works in R^2, so it works everywhere, right?
-            height = self.e2()[0]
-            radius = norm(self.e2()[1:])
-            dist = (height - radius) / sqrt(2)
-        else:
-            raise NotImplementedError
-
-        omega = specnorm(self.L())/(dist*norm(self.e1()))
+        dist = self.K().ball_radius(self.e2())
+        omega = self._L_specnorm()/(dist*norm(self.e1()))
         y = matrix([omega])
         z2 = q
         z1 = y*self.e2() - self.L().trans()*z2
-        z = matrix([z1,z2], (self.dimension()*2, 1))
+        z = matrix([z1, z2], (self.dimension()*2, 1))
 
         return {'y': y, 'z': z}
 
 
+    def _L_specnorm(self):
+        """
+        Compute the spectral norm of ``L`` and cache it.
+        """
+        if self._L_specnorm_value is None:
+            self._L_specnorm_value = specnorm(self.L())
+        return self._L_specnorm_value
+
+    def tolerance_scale(self, solution):
+        # Don't return anything smaller than 1... we can't go below
+        # out "minimum tolerance."
+        norm_p1_opt = norm(solution.player1_optimal())
+        norm_p2_opt = norm(solution.player2_optimal())
+        scale = self._L_specnorm()*(norm_p1_opt + norm_p2_opt)
+        return max(1, scale/2.0)
+
+
     def solution(self):
         """
         Solve this linear game and return a :class:`Solution`.
@@ -991,6 +977,44 @@ class SymmetricLinearGame:
               [2.506...]
               [0.000...]
 
+        This is another one that was difficult numerically, and caused
+        trouble even after we fixed the first two::
+
+            >>> from dunshire import *
+            >>> L = [[57.22233908627052301199, 41.70631373437460354126],
+            ...      [83.04512571985074487202, 57.82581810406928468637]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [7.31887017043399268346, 0.89744171905822367474]
+            >>> e2 = [0.11099824781179848388, 6.12564670639315345113]
+            >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+            >>> print(SLG.solution())
+            Game value: 70.437...
+            Player 1 optimal:
+              [9.009...]
+              [0.000...]
+            Player 2 optimal:
+              [0.136...]
+              [0.000...]
+
+        And finally, here's one that returns an "optimal" solution, but
+        whose primal/dual objective function values are far apart::
+
+            >>> from dunshire import *
+            >>> L = [[ 6.49260076597376212248, -0.60528030227678542019],
+            ...      [ 2.59896077096751731972, -0.97685530240286766457]]
+            >>> K = IceCream(2)
+            >>> e1 = [1, 0.43749513972645248661]
+            >>> e2 = [1, 0.46008379832200291260]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 11.596...
+            Player 1 optimal:
+              [ 1.852...]
+              [-1.852...]
+            Player 2 optimal:
+              [ 1.777...]
+              [-1.777...]
+
         """
         try:
             opts = {'show_progress': False}
@@ -1001,13 +1025,14 @@ class SymmetricLinearGame:
                                        self.A(),
                                        self.b(),
                                        primalstart=self.player1_start(),
+                                       dualstart=self.player2_start(),
                                        options=opts)
         except ValueError as error:
             if str(error) == 'math domain error':
                 # Oops, CVXOPT tried to take the square root of a
                 # negative number. Report some details about the game
                 # rather than just the underlying CVXOPT crash.
-                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+                printing.options['dformat'] = DEBUG_FLOAT_FORMAT
                 raise PoorScalingException(self)
             else:
                 raise error
@@ -1032,9 +1057,23 @@ class SymmetricLinearGame:
         # that CVXOPT is convinced the problem is infeasible (and that
         # cannot happen).
         if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        soln = Solution(payoff, p1_optimal, p2_optimal)
+
         # The "optimal" and "unknown" results, we actually treat the
         # same. Even if CVXOPT bails out due to numerical difficulty,
         # it will have some candidate points in mind. If those
@@ -1045,29 +1084,18 @@ class SymmetricLinearGame:
         # close enough (one could be low by ABS_TOL, the other high by
         # it) because otherwise CVXOPT might return "unknown" and give
         # us two points in the cone that are nowhere near optimal.
-        if abs(p1_value - p2_value) > 2*options.ABS_TOL:
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+        #
+        if abs(p1_value - p2_value) > self.tolerance_scale(soln)*ABS_TOL:
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
         # And we also check that the points it gave us belong to the
         # cone, just in case...
         if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            printing.options['dformat'] = DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
 
-        # For the game value, we could use any of:
-        #
-        #   * p1_value
-        #   * p2_value
-        #   * (p1_value + p2_value)/2
-        #   * the game payoff
-        #
-        # We want the game value to be the payoff, however, so it
-        # makes the most sense to just use that, even if it means we
-        # can't test the fact that p1_value/p2_value are close to the
-        # payoff.
-        payoff = self.payoff(p1_optimal, p2_optimal)
-        return Solution(payoff, p1_optimal, p2_optimal)
+        return soln
 
 
     def condition(self):
@@ -1098,10 +1126,8 @@ class SymmetricLinearGame:
         >>> e1 = [1]
         >>> e2 = e1
         >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-        >>> actual = SLG.condition()
-        >>> expected = 1.8090169943749477
-        >>> abs(actual - expected) < options.ABS_TOL
-        True
+        >>> SLG.condition()
+        1.809...
 
         """
         return (condition_number(self._G()) + condition_number(self.A()))/2