From 5f0f517a80ae4f3e12bf4d3a84ea3d182cb96e70 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Sun, 4 Nov 2018 01:13:16 -0500 Subject: [PATCH] orthogonal_polynomials.py: use xrange everywhere. --- mjo/orthogonal_polynomials.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/mjo/orthogonal_polynomials.py b/mjo/orthogonal_polynomials.py index 7e094fc..fd5fd75 100644 --- a/mjo/orthogonal_polynomials.py +++ b/mjo/orthogonal_polynomials.py @@ -82,7 +82,7 @@ def legendre_p(n, x, a = -1, b = 1): ... for b in basis]) ... sage: f = sin(x) - sage: legendre_basis = [ legendre_p(k, x, a, b) for k in range(0,4) ] + sage: legendre_basis = [ legendre_p(k, x, a, b) for k in xrange(4) ] sage: proj = project(legendre_basis, f) sage: proj.simplify_trig() 5/2*(7*(pi^2 - 15)*x^3 - 3*(pi^4 - 21*pi^2)*x)/pi^6 @@ -92,7 +92,7 @@ def legendre_p(n, x, a = -1, b = 1): We should agree with Maxima for all `n`:: sage: eq = lambda k: bool(legendre_p(k,x) == legendre_P(k,x)) - sage: all([eq(k) for k in range(0,20) ]) # long time + sage: all([eq(k) for k in xrange(20) ]) # long time True We can evaluate the result of the zeroth polynomial:: @@ -196,6 +196,6 @@ def legendre_p(n, x, a = -1, b = 1): # From Abramowitz & Stegun, (22.3.2) with alpha = beta = 0. # Also massaged to support finite field elements. - P = sum([ c(m)*g(m) for m in range(0,n+1) ])/(2**n) + P = sum([ c(m)*g(m) for m in xrange(n+1) ])/(2**n) return P -- 2.43.2