From 393a3fbd21087c3ba22f47b8a3b41ae987e4a841 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 23 Aug 2019 19:26:45 -0400 Subject: [PATCH 1/1] eja: delete redundant Jordan axiom tests. --- mjo/eja/eja_algebra.py | 54 ++---------------------------------------- 1 file changed, 2 insertions(+), 52 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index a207250..29ff1da 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -441,8 +441,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): EXAMPLES: - The inner product must satisfy its axiom for this algebra to truly - be a Euclidean Jordan Algebra:: + Our inner product satisfies the Jordan axiom, which is also + referred to as "associativity" for a symmetric bilinear form:: sage: set_random_seed() sage: J = random_eja() @@ -800,16 +800,6 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra): sage: RealCartesianProductEJA(3, prefix='r').gens() (r0, r1, r2) - Our inner product satisfies the Jordan axiom:: - - sage: set_random_seed() - sage: J = RealCartesianProductEJA.random_instance() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).inner_product(z) == y.inner_product(x*z) - True - """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) @@ -1058,16 +1048,6 @@ class RealSymmetricEJA(MatrixEuclideanJordanAlgebra): sage: RealSymmetricEJA(3, prefix='q').gens() (q0, q1, q2, q3, q4, q5) - Our inner product satisfies the Jordan axiom:: - - sage: set_random_seed() - sage: J = RealSymmetricEJA.random_instance() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).inner_product(z) == y.inner_product(x*z) - True - Our natural basis is normalized with respect to the natural inner product unless we specify otherwise:: @@ -1311,16 +1291,6 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra): sage: ComplexHermitianEJA(2, prefix='z').gens() (z0, z1, z2, z3) - Our inner product satisfies the Jordan axiom:: - - sage: set_random_seed() - sage: J = ComplexHermitianEJA.random_instance() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).inner_product(z) == y.inner_product(x*z) - True - Our natural basis is normalized with respect to the natural inner product unless we specify otherwise:: @@ -1571,16 +1541,6 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra): sage: QuaternionHermitianEJA(2, prefix='a').gens() (a0, a1, a2, a3, a4, a5) - Our inner product satisfies the Jordan axiom:: - - sage: set_random_seed() - sage: J = QuaternionHermitianEJA.random_instance() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).inner_product(z) == y.inner_product(x*z) - True - Our natural basis is normalized with respect to the natural inner product unless we specify otherwise:: @@ -1692,16 +1652,6 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra): sage: JordanSpinEJA(2, prefix='B').gens() (B0, B1) - Our inner product satisfies the Jordan axiom:: - - sage: set_random_seed() - sage: J = JordanSpinEJA.random_instance() - sage: x = J.random_element() - sage: y = J.random_element() - sage: z = J.random_element() - sage: (x*y).inner_product(z) == y.inner_product(x*z) - True - """ def __init__(self, n, field=QQ, **kwargs): V = VectorSpace(field, n) -- 2.44.2