From b05705ab04692f738a57a6ef387662ba5ea46ceb Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Tue, 27 Aug 2019 10:30:16 -0400 Subject: [PATCH] eja: fix incorrect usage of "Jordan axiom" -- I meant "associativity." --- mjo/eja/eja_algebra.py | 4 ++-- mjo/eja/eja_element.py | 5 ++--- 2 files changed, 4 insertions(+), 5 deletions(-) diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 3f2127d..02ed966 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -406,8 +406,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): EXAMPLES: - Our inner product satisfies the Jordan axiom, which is also - referred to as "associativity" for a symmetric bilinear form:: + Our inner product is "associative," which means the following for + a symmetric bilinear form:: sage: set_random_seed() sage: J = random_eja() diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index d9b6eb1..0705018 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -1162,8 +1162,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): TESTS: - The trace inner product is commutative, bilinear, and satisfies - the Jordan axiom: + The trace inner product is commutative, bilinear, and associative:: sage: set_random_seed() sage: J = random_eja() @@ -1183,7 +1182,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): ....: a*x.trace_inner_product(z) ) sage: actual == expected True - sage: # jordan axiom + sage: # associative sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) True -- 2.44.2