if K1.dim() != K2.dim():
return False
- if lineality(K1) != lineality(K2):
+ if K1.lineality() != K2.lineality():
return False
if K1.is_solid() != K2.is_solid():
sage: set_random_seed()
sage: K = random_cone(max_dim = 8)
- sage: lineality(K) == lineality(rho(K))
+ sage: K.lineality() == rho(K).lineality()
True
No matter which space we restrict to, the lineality should not
sage: set_random_seed()
sage: K = random_cone(max_dim = 8)
- sage: lineality(K) >= lineality(rho(K))
+ sage: K.lineality() >= rho(K).lineality()
True
- sage: lineality(K) >= lineality(rho(K, K.dual()))
+ sage: K.lineality() >= rho(K, K.dual()).lineality()
True
If we do this according to our paper, then the result is proper::
-def lineality(K):
- r"""
- Compute the lineality of this cone.
-
- The lineality of a cone is the dimension of the largest linear
- subspace contained in that cone.
-
- OUTPUT:
-
- A nonnegative integer; the dimension of the largest subspace
- contained within this cone.
-
- REFERENCES:
-
- .. [Rockafellar] R.T. Rockafellar. Convex Analysis. Princeton
- University Press, Princeton, 1970.
-
- EXAMPLES:
-
- The lineality of the nonnegative orthant is zero, since it clearly
- contains no lines::
-
- sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)])
- sage: lineality(K)
- 0
-
- However, if we add another ray so that the entire `x`-axis belongs
- to the cone, then the resulting cone will have lineality one::
-
- sage: K = Cone([(1,0,0), (-1,0,0), (0,1,0), (0,0,1)])
- sage: lineality(K)
- 1
-
- If our cone is all of `\mathbb{R}^{2}`, then its lineality is equal
- to the dimension of the ambient space (i.e. two)::
-
- sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
- sage: lineality(K)
- 2
-
- Per the definition, the lineality of the trivial cone in a trivial
- space is zero::
-
- sage: K = Cone([], lattice=ToricLattice(0))
- sage: lineality(K)
- 0
-
- TESTS:
-
- The lineality of a cone should be an integer between zero and the
- dimension of the ambient space, inclusive::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8)
- sage: l = lineality(K)
- sage: l in ZZ
- True
- sage: (0 <= l) and (l <= K.lattice_dim())
- True
-
- A strictly convex cone should have lineality zero::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8, strictly_convex = True)
- sage: lineality(K)
- 0
-
- """
- return K.linear_subspace().dimension()
-
-
-def codim(K):
- r"""
- Compute the codimension of this cone.
-
- The codimension of a cone is the dimension of the space of all
- elements perpendicular to every element of the cone. In other words,
- the codimension is the difference between the dimension of the
- ambient space and the dimension of the cone itself.
-
- OUTPUT:
-
- A nonnegative integer representing the dimension of the space of all
- elements perpendicular to this cone.
-
- .. seealso::
-
- :meth:`dim`, :meth:`lattice_dim`
-
- EXAMPLES:
-
- The codimension of the nonnegative orthant is zero, since the span of
- its generators equals the entire ambient space::
-
- sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)])
- sage: codim(K)
- 0
-
- However, if we remove a ray so that the entire cone is contained
- within the `x-y`-plane, then the resulting cone will have
- codimension one, because the `z`-axis is perpendicular to every
- element of the cone::
-
- sage: K = Cone([(1,0,0), (0,1,0)])
- sage: codim(K)
- 1
-
- If our cone is all of `\mathbb{R}^{2}`, then its codimension is zero::
-
- sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
- sage: codim(K)
- 0
-
- And if the cone is trivial in any space, then its codimension is
- equal to the dimension of the ambient space::
-
- sage: K = Cone([], lattice=ToricLattice(0))
- sage: K.lattice_dim()
- 0
- sage: codim(K)
- 0
-
- sage: K = Cone([(0,)])
- sage: K.lattice_dim()
- 1
- sage: codim(K)
- 1
-
- sage: K = Cone([(0,0)])
- sage: K.lattice_dim()
- 2
- sage: codim(K)
- 2
-
- TESTS:
-
- The codimension of a cone should be an integer between zero and
- the dimension of the ambient space, inclusive::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8)
- sage: c = codim(K)
- sage: c in ZZ
- True
- sage: (0 <= c) and (c <= K.lattice_dim())
- True
-
- A solid cone should have codimension zero::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8, solid = True)
- sage: codim(K)
- 0
-
- The codimension of a cone is equal to the lineality of its dual::
-
- sage: set_random_seed()
- sage: K = random_cone(max_dim = 8, solid = True)
- sage: codim(K) == lineality(K.dual())
- True
-
- """
- return (K.lattice_dim() - K.dim())
-
-
def discrete_complementarity_set(K):
r"""
Compute the discrete complementarity set of this cone.
sage: K = Cone([e1, neg_e1, e2, neg_e2, z, z, z])
sage: lyapunov_rank(K)
19
- sage: K.lattice_dim()**2 - K.dim()*codim(K)
+ sage: K.lattice_dim()**2 - K.dim()*K.codim()
19
The Lyapunov rank should be additive on a product of proper cones
sage: actual = lyapunov_rank(K)
sage: K_S = rho(K)
sage: K_SP = rho(K_S.dual()).dual()
- sage: l = lineality(K)
- sage: c = codim(K)
+ sage: l = K.lineality()
+ sage: c = K.codim()
sage: expected = lyapunov_rank(K_SP) + K.dim()*(l + c) + c**2
sage: actual == expected
True
m = K.dim()
n = K.lattice_dim()
- l = lineality(K)
+ l = K.lineality()
if m < n:
# K is not solid, restrict to its span.