where
import Cardinal
-import Face (Face(Face, v0, v1, v2, v3))
+import qualified Face (Face(Face, v0, v1, v2, v3))
import FunctionValues
import Point
-import Tetrahedron (Tetrahedron(Tetrahedron), fv)
+import Tetrahedron hiding (c)
import ThreeDimensional
data Cube = Cube { h :: Double,
" ymin: " ++ (show (ymin c)) ++ "\n" ++
" ymax: " ++ (show (ymax c)) ++ "\n" ++
" zmin: " ++ (show (zmin c)) ++ "\n" ++
- " zmax: " ++ (show (zmax c)) ++ "\n"
+ " zmax: " ++ (show (zmax c)) ++ "\n" ++
+ " fv: " ++ (show (Cube.fv c)) ++ "\n"
where
subscript =
(show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c))
-- Face stuff.
-- | The top (in the direction of z) face of the cube.
-top_face :: Cube -> Face
-top_face c = Face v0' v1' v2' v3'
+top_face :: Cube -> Face.Face
+top_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
- v0' = (center c) + (delta, delta, delta)
- v1' = (center c) + (delta, -delta, delta)
- v2' = (center c) + (-delta, -delta, delta)
- v3' = (center c) + (-delta, delta, delta)
+ v0' = (center c) + (delta, -delta, delta)
+ v1' = (center c) + (delta, delta, delta)
+ v2' = (center c) + (-delta, delta, delta)
+ v3' = (center c) + (-delta, -delta, delta)
-- | The back (in the direction of x) face of the cube.
-back_face :: Cube -> Face
-back_face c = Face v0' v1' v2' v3'
+back_face :: Cube -> Face.Face
+back_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
v0' = (center c) + (delta, delta, delta)
-- The bottom face (in the direction of -z) of the cube.
-down_face :: Cube -> Face
-down_face c = Face v0' v1' v2' v3'
+down_face :: Cube -> Face.Face
+down_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
v0' = (center c) + (delta, delta, -delta)
-- | The front (in the direction of -x) face of the cube.
-front_face :: Cube -> Face
-front_face c = Face v0' v1' v2' v3'
+front_face :: Cube -> Face.Face
+front_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
v0' = (center c) + (-delta, -delta, delta)
v2' = (center c) + (-delta, delta, -delta)
v3' = (center c) + (-delta, -delta, -delta)
-
-- | The left (in the direction of -y) face of the cube.
-left_face :: Cube -> Face
-left_face c = Face v0' v1' v2' v3'
+left_face :: Cube -> Face.Face
+left_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
v0' = (center c) + (-delta, -delta, delta)
-- | The right (in the direction of y) face of the cube.
-right_face :: Cube -> Face
-right_face c = Face v0' v1' v2' v3'
+right_face :: Cube -> Face.Face
+right_face c = Face.Face v0' v1' v2' v3'
where
delta = (1/2)*(h c)
v0' = (center c) + (-delta, delta, -delta)
v3' = (center c) + (-delta, delta, delta)
+reorient :: Tetrahedron -> Tetrahedron
+reorient t = t
+-- | volume t > 0 = t
+-- | otherwise = t { v2 = (v3 t),
+-- v3 = (v2 t) }
tetrahedron0 :: Cube -> Tetrahedron
tetrahedron0 c =
- Tetrahedron (Cube.fv c) v0' v1' v2' v3'
+ reorient $ Tetrahedron (Cube.fv c) v0' v1' v2' v3'
where
v0' = center c
v1' = center (front_face c)
- v2' = v0 (front_face c)
- v3' = v1 (front_face c)
+ v2' = Face.v0 (front_face c)
+ v3' = Face.v1 (front_face c)
tetrahedron1 :: Cube -> Tetrahedron
tetrahedron1 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (front_face c)
- v2' = v1 (front_face c)
- v3' = v2 (front_face c)
+ v2' = Face.v1 (front_face c)
+ v3' = Face.v2 (front_face c)
fv' = rotate (Cube.fv c) ccwx
tetrahedron2 :: Cube -> Tetrahedron
tetrahedron2 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (front_face c)
- v2' = v2 (front_face c)
- v3' = v3 (front_face c)
+ v2' = Face.v2 (front_face c)
+ v3' = Face.v3 (front_face c)
fv' = rotate (Cube.fv c) (ccwx . ccwx)
tetrahedron3 :: Cube -> Tetrahedron
tetrahedron3 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (front_face c)
- v2' = v3 (front_face c)
- v3' = v1 (front_face c)
+ v2' = Face.v3 (front_face c)
+ v3' = Face.v0 (front_face c)
fv' = rotate (Cube.fv c) cwx
tetrahedron4 :: Cube -> Tetrahedron
tetrahedron4 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (top_face c)
- v2' = v0 (front_face c)
- v3' = v1 (front_face c)
+ v2' = Face.v0 (top_face c)
+ v3' = Face.v1 (top_face c)
fv' = rotate (Cube.fv c) cwy
tetrahedron5 :: Cube -> Tetrahedron
tetrahedron5 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (top_face c)
- v2' = v1 (top_face c)
- v3' = v2 (top_face c)
+ v2' = Face.v1 (top_face c)
+ v3' = Face.v2 (top_face c)
fv' = rotate (Tetrahedron.fv (tetrahedron0 c)) ccwx
tetrahedron6 :: Cube -> Tetrahedron
tetrahedron6 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (top_face c)
- v2' = v2 (top_face c)
- v3' = v3 (top_face c)
+ v2' = Face.v2 (top_face c)
+ v3' = Face.v3 (top_face c)
fv' = rotate (Tetrahedron.fv (tetrahedron0 c)) (ccwx . ccwx)
tetrahedron7 :: Cube -> Tetrahedron
tetrahedron7 c =
- Tetrahedron fv' v0' v1' v2' v3'
+ reorient $ Tetrahedron fv' v0' v1' v2' v3'
where
v0' = center c
v1' = center (top_face c)
- v2' = v3 (top_face c)
- v3' = v1 (top_face c)
+ v2' = Face.v3 (top_face c)
+ v3' = Face.v0 (top_face c)
fv' = rotate (Tetrahedron.fv (tetrahedron0 c)) cwx
tetrahedrons :: Cube -> [Tetrahedron]
import Test.QuickCheck
+import Comparisons
import Cube
import FunctionValues (FunctionValues(FunctionValues))
import Tests.FunctionValues
-- | Since the grid size is necessarily positive, all tetrahedrons
-- (which comprise cubes of positive volume) must have positive volume
-- as well.
-prop_all_volumes_positive :: Cube -> Property
+prop_all_volumes_positive :: Cube -> Bool
prop_all_volumes_positive c =
- (delta > 0) ==> (null nonpositive_volumes)
+ null nonpositive_volumes
where
- delta = h c
ts = tetrahedrons c
volumes = map volume ts
nonpositive_volumes = filter (<= 0) volumes
+-- | In fact, since all of the tetrahedra are identical, we should
+-- already know their volumes. There's 24 tetrahedra to a cube, so
+-- we'd expect the volume of each one to be (1/24)*h^3.
+prop_all_volumes_exact :: Cube -> Bool
+prop_all_volumes_exact c =
+ volume t ~= (1/24)*(delta^(3::Int))
+ where
+ t = head $ tetrahedrons c
+ delta = h c
+
-- | All tetrahedron should have their v0 located at the center of the cube.
prop_v0_all_equal :: Cube -> Bool
prop_v0_all_equal c = (v0 t0) == (v0 t1)
-- | This pretty much repeats the prop_all_volumes_positive property,
--- but will let me know which face's vertices are disoriented.
-prop_front_face_volumes_positive :: Cube -> Property
-prop_front_face_volumes_positive c =
- (delta > 0) ==> (null nonpositive_volumes)
- where
- delta = h c
- ts = [tetrahedron0 c, tetrahedron1 c, tetrahedron2 c, tetrahedron3 c]
- volumes = map volume ts
- nonpositive_volumes = filter (<= 0) volumes
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron0_volumes_positive :: Cube -> Bool
+prop_tetrahedron0_volumes_positive c =
+ volume (tetrahedron0 c) > 0
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron1_volumes_positive :: Cube -> Bool
+prop_tetrahedron1_volumes_positive c =
+ volume (tetrahedron1 c) > 0
-- | This pretty much repeats the prop_all_volumes_positive property,
--- but will let me know which face's vertices are disoriented.
-prop_top_face_volumes_positive :: Cube -> Property
-prop_top_face_volumes_positive c =
- (delta > 0) ==> (null nonpositive_volumes)
- where
- delta = h c
- ts = [tetrahedron4 c, tetrahedron5 c, tetrahedron6 c, tetrahedron7 c]
- volumes = map volume ts
- nonpositive_volumes = filter (<= 0) volumes
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron2_volumes_positive :: Cube -> Bool
+prop_tetrahedron2_volumes_positive c =
+ volume (tetrahedron2 c) > 0
+
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron3_volumes_positive :: Cube -> Bool
+prop_tetrahedron3_volumes_positive c =
+ volume (tetrahedron3 c) > 0
+
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron4_volumes_positive :: Cube -> Bool
+prop_tetrahedron4_volumes_positive c =
+ volume (tetrahedron4 c) > 0
+
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron5_volumes_positive :: Cube -> Bool
+prop_tetrahedron5_volumes_positive c =
+ volume (tetrahedron5 c) > 0
+
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron6_volumes_positive :: Cube -> Bool
+prop_tetrahedron6_volumes_positive c =
+ volume (tetrahedron6 c) > 0
+
+-- | This pretty much repeats the prop_all_volumes_positive property,
+-- but will let me know which tetrahedrons's vertices are disoriented.
+prop_tetrahedron7_volumes_positive :: Cube -> Bool
+prop_tetrahedron7_volumes_positive c =
+ volume (tetrahedron7 c) > 0
putStr "prop_all_volumes_positive... "
quickCheckWith qc_args prop_all_volumes_positive
- putStr "prop_front_face_volumes_positive... "
- quickCheckWith qc_args prop_front_face_volumes_positive
+ putStr "prop_all_volumes_exact... "
+ quickCheckWith qc_args prop_all_volumes_exact
- putStr "prop_top_face_volumes_positive... "
- quickCheckWith qc_args prop_top_face_volumes_positive
+ putStr "prop_tetrahedron0_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron0_volumes_positive
+
+ putStr "prop_tetrahedron1_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron1_volumes_positive
+
+ putStr "prop_tetrahedron2_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron2_volumes_positive
+
+ putStr "prop_tetrahedron3_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron3_volumes_positive
+
+ putStr "prop_tetrahedron4_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron4_volumes_positive
+
+ putStr "prop_tetrahedron5_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron5_volumes_positive
+
+ putStr "prop_tetrahedron6_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron6_volumes_positive
+
+ putStr "prop_tetrahedron7_volumes_positive... "
+ quickCheckWith qc_args prop_tetrahedron7_volumes_positive
putStr "prop_v0_all_equal... "
quickCheckWith qc_args prop_v0_all_equal
- -- putStr "prop_factorial_greater... "
- -- quickCheckWith qc_args prop_factorial_greater
+ putStr "prop_factorial_greater... "
+ quickCheckWith qc_args prop_factorial_greater
- -- putStr "prop_b0_v0_always_unity... "
- -- quickCheckWith qc_args prop_b0_v0_always_unity
+ putStr "prop_b0_v0_always_unity... "
+ quickCheckWith qc_args prop_b0_v0_always_unity
- -- putStr "prop_b0_v1_always_zero... "
- -- quickCheckWith qc_args prop_b0_v1_always_zero
+ putStr "prop_b0_v1_always_zero... "
+ quickCheckWith qc_args prop_b0_v1_always_zero
- -- putStr "prop_b0_v2_always_zero... "
- -- quickCheckWith qc_args prop_b0_v2_always_zero
+ putStr "prop_b0_v2_always_zero... "
+ quickCheckWith qc_args prop_b0_v2_always_zero
- -- putStr "prop_b0_v3_always_zero... "
- -- quickCheckWith qc_args prop_b0_v3_always_zero
+ putStr "prop_b0_v3_always_zero... "
+ quickCheckWith qc_args prop_b0_v3_always_zero
- -- putStr "prop_b1_v1_always_unity... "
- -- quickCheckWith qc_args prop_b1_v1_always_unity
+ putStr "prop_b1_v1_always_unity... "
+ quickCheckWith qc_args prop_b1_v1_always_unity
- -- putStr "prop_b1_v0_always_zero... "
- -- quickCheckWith qc_args prop_b1_v0_always_zero
+ putStr "prop_b1_v0_always_zero... "
+ quickCheckWith qc_args prop_b1_v0_always_zero
- -- putStr "prop_b1_v2_always_zero... "
- -- quickCheckWith qc_args prop_b1_v2_always_zero
+ putStr "prop_b1_v2_always_zero... "
+ quickCheckWith qc_args prop_b1_v2_always_zero
- -- putStr "prop_b1_v3_always_zero... "
- -- quickCheckWith qc_args prop_b1_v3_always_zero
+ putStr "prop_b1_v3_always_zero... "
+ quickCheckWith qc_args prop_b1_v3_always_zero
- -- putStr "prop_b2_v2_always_unity... "
- -- quickCheckWith qc_args prop_b2_v2_always_unity
+ putStr "prop_b2_v2_always_unity... "
+ quickCheckWith qc_args prop_b2_v2_always_unity
- -- putStr "prop_b2_v0_always_zero... "
- -- quickCheckWith qc_args prop_b2_v0_always_zero
+ putStr "prop_b2_v0_always_zero... "
+ quickCheckWith qc_args prop_b2_v0_always_zero
- -- putStr "prop_b2_v1_always_zero... "
- -- quickCheckWith qc_args prop_b2_v1_always_zero
+ putStr "prop_b2_v1_always_zero... "
+ quickCheckWith qc_args prop_b2_v1_always_zero
- -- putStr "prop_b2_v3_always_zero... "
- -- quickCheckWith qc_args prop_b2_v3_always_zero
+ putStr "prop_b2_v3_always_zero... "
+ quickCheckWith qc_args prop_b2_v3_always_zero
- -- putStr "prop_b3_v3_always_unity... "
- -- quickCheckWith qc_args prop_b3_v3_always_unity
+ putStr "prop_b3_v3_always_unity... "
+ quickCheckWith qc_args prop_b3_v3_always_unity
- -- putStr "prop_b3_v0_always_zero... "
- -- quickCheckWith qc_args prop_b3_v0_always_zero
+ putStr "prop_b3_v0_always_zero... "
+ quickCheckWith qc_args prop_b3_v0_always_zero
- -- putStr "prop_b3_v1_always_zero... "
- -- quickCheckWith qc_args prop_b3_v1_always_zero
+ putStr "prop_b3_v1_always_zero... "
+ quickCheckWith qc_args prop_b3_v1_always_zero
- -- putStr "prop_b3_v2_always_zero... "
- -- quickCheckWith qc_args prop_b3_v2_always_zero
+ putStr "prop_b3_v2_always_zero... "
+ quickCheckWith qc_args prop_b3_v2_always_zero
-- putStrLn "\np. 78, (2.4)\n"