X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2Fapply-default-acl.c;h=4a6ef765e10379d213661dacf39d8a08636cb20c;hb=6d396c52c731f260cc261e26c75034bd5007f0b0;hp=10bdb328a487bc4696af11424e85801129b63453;hpb=d89f22c28473cd2e201500af0f970478105c632a;p=apply-default-acl.git diff --git a/src/apply-default-acl.c b/src/apply-default-acl.c index 10bdb32..4a6ef76 100644 --- a/src/apply-default-acl.c +++ b/src/apply-default-acl.c @@ -1,7 +1,16 @@ +/** + * @file apply-default-acl.c + * + * @brief The entire implementation. + * + */ + /* On Linux, ftw.h needs this special voodoo to work. */ #define _XOPEN_SOURCE 500 +#define _GNU_SOURCE #include +#include /* AT_FOO constants */ #include /* nftw() et al. */ #include #include /* dirname() */ @@ -18,39 +27,83 @@ #include #include +/* Most of the libacl functions return 1 for success, 0 for failure, + and -1 on error */ +#define ACL_ERROR -1 +#define ACL_FAILURE 0 +#define ACL_SUCCESS 1 + + +/** + * @brief Get the mode bits from the given path. + * + * @param path + * The path (file or directory) whose mode we want. + * + * @return A mode_t (st_mode) structure containing the mode bits. + * See sys/stat.h for details. + */ mode_t get_mode(const char* path) { - /* - * Get the mode bits from path. - */ if (path == NULL) { errno = ENOENT; return -1; } struct stat s; - int result = stat(path, &s); + int result = lstat(path, &s); if (result == 0) { return s.st_mode; } else { - /* errno will be set already by stat() */ + /* errno will be set already by lstat() */ return result; } } + +/** + * @brief Determine if the given path might refer to an (unsafe) hard link. + * + * @param path + * The path to test. + * + * @return true if we are certain that @c path does not refer to a hard + * link, and false otherwise. In case of error, false is returned, + * because we are not sure that @c path is not a hard link. + */ +bool is_hardlink_safe(const char* path) { + if (path == NULL) { + return false; + } + struct stat s; + int result = lstat(path, &s); + if (result == 0) { + return (s.st_nlink == 1 || S_ISDIR(s.st_mode)); + } + else { + return false; + } +} + + +/** + * @brief Determine whether or not the given path is a regular file. + * + * @param path + * The path to test. + * + * @return true if @c path is a regular file, false otherwise. + */ bool is_regular_file(const char* path) { - /* - * Returns true if path is a regular file, false otherwise. - */ if (path == NULL) { return false; } struct stat s; - int result = stat(path, &s); + int result = lstat(path, &s); if (result == 0) { return S_ISREG(s.st_mode); } @@ -59,16 +112,59 @@ bool is_regular_file(const char* path) { } } -bool is_directory(const char* path) { - /* - * Returns true if path is a directory, false otherwise. - */ + + +/** + * @brief Determine whether or not the given path is accessible. + * + * @param path + * The path to test. + * + * @return true if @c path is accessible to the current effective + * user/group, false otherwise. + */ +bool path_accessible(const char* path) { + if (path == NULL) { + return false; + } + + /* Test for access using the effective user and group rather than + the real one. */ + int flags = AT_EACCESS; + + /* Don't follow symlinks when checking for a path's existence, + since we won't follow them to set its ACLs either. */ + flags |= AT_SYMLINK_NOFOLLOW; + + /* If the path is relative, interpret it relative to the current + working directory (just like the access() system call). */ + int result = faccessat(AT_FDCWD, path, F_OK, flags); + + if (result == 0) { + return true; + } + else { + return false; + } +} + + + +/** + * @brief Determine whether or not the given path is a directory. + * + * @param path + * The path to test. + * + * @return true if @c path is a directory, false otherwise. + */ +bool is_path_directory(const char* path) { if (path == NULL) { return false; } struct stat s; - int result = stat(path, &s); + int result = lstat(path, &s); if (result == 0) { return S_ISDIR(s.st_mode); } @@ -79,37 +175,58 @@ bool is_directory(const char* path) { +/** + * @brief Update (or create) an entry in an @b minimal ACL. + * + * This function will not work if @c aclp contains extended + * entries. This is fine for our purposes, since we call @c wipe_acls + * on each path before applying the default to it. + * + * The assumption that there are no extended entries makes things much + * simpler. For example, we only have to update the @c ACL_USER_OBJ, + * @c ACL_GROUP_OBJ, and @c ACL_OTHER entries -- all others can simply + * be created anew. This means we don't have to fool around comparing + * named-user/group entries. + * + * @param aclp + * A pointer to the acl_t structure whose entry we want to modify. + * + * @param entry + * The new entry. If @c entry contains a user/group/other entry, we + * update the existing one. Otherwise we create a new entry. + * + * @return If there is an unexpected library error, @c ACL_ERROR is + * returned. Otherwise, @c ACL_SUCCESS. + * + */ int acl_set_entry(acl_t* aclp, acl_entry_t entry) { - /* - * Update or create the given entry. - */ acl_tag_t entry_tag; int gt_result = acl_get_tag_type(entry, &entry_tag); - if (gt_result == -1) { + if (gt_result == ACL_ERROR) { perror("acl_set_entry (acl_get_tag_type)"); - return -1; + return ACL_ERROR; } acl_permset_t entry_permset; int ps_result = acl_get_permset(entry, &entry_permset); - if (ps_result == -1) { + if (ps_result == ACL_ERROR) { perror("acl_set_entry (acl_get_permset)"); - return -1; + return ACL_ERROR; } acl_entry_t existing_entry; /* Loop through the given ACL looking for matching entries. */ int result = acl_get_entry(*aclp, ACL_FIRST_ENTRY, &existing_entry); - while (result == 1) { + while (result == ACL_SUCCESS) { acl_tag_t existing_tag = ACL_UNDEFINED_TAG; int tag_result = acl_get_tag_type(existing_entry, &existing_tag); - if (tag_result == -1) { + if (tag_result == ACL_ERROR) { perror("set_acl_tag_permset (acl_get_tag_type)"); - return -1; + return ACL_ERROR; } if (existing_tag == entry_tag) { @@ -117,21 +234,23 @@ int acl_set_entry(acl_t* aclp, entry_tag == ACL_GROUP_OBJ || entry_tag == ACL_OTHER) { /* Only update for these three since all other tags will have - been wiped. */ + been wiped. These three are guaranteed to exist, so if we + match one of them, we're allowed to return ACL_SUCCESS + below and bypass the rest of the function. */ acl_permset_t existing_permset; int gep_result = acl_get_permset(existing_entry, &existing_permset); - if (gep_result == -1) { + if (gep_result == ACL_ERROR) { perror("acl_set_entry (acl_get_permset)"); - return -1; + return ACL_ERROR; } int s_result = acl_set_permset(existing_entry, entry_permset); - if (s_result == -1) { + if (s_result == ACL_ERROR) { perror("acl_set_entry (acl_set_permset)"); - return -1; + return ACL_ERROR; } - return 1; + return ACL_SUCCESS; } } @@ -141,32 +260,38 @@ int acl_set_entry(acl_t* aclp, /* This catches both the initial acl_get_entry and the ones at the end of the loop. */ - if (result == -1) { + if (result == ACL_ERROR) { perror("acl_set_entry (acl_get_entry)"); - return -1; + return ACL_ERROR; } /* If we've made it this far, we need to add a new entry to the ACL. */ acl_entry_t new_entry; - /* We allocate memory here that we should release! */ + /* The acl_create_entry() function can allocate new memory and/or + * change the location of the ACL structure entirely. When that + * happens, the value pointed to by aclp is updated, which means + * that a new acl_t gets "passed out" to our caller, eventually to + * be fed to acl_free(). In other words, we should still be freeing + * the right thing, even if the value pointed to by aclp changes. + */ int c_result = acl_create_entry(aclp, &new_entry); - if (c_result == -1) { + if (c_result == ACL_ERROR) { perror("acl_set_entry (acl_create_entry)"); - return -1; + return ACL_ERROR; } int st_result = acl_set_tag_type(new_entry, entry_tag); - if (st_result == -1) { + if (st_result == ACL_ERROR) { perror("acl_set_entry (acl_set_tag_type)"); - return -1; + return ACL_ERROR; } int s_result = acl_set_permset(new_entry, entry_permset); - if (s_result == -1) { + if (s_result == ACL_ERROR) { perror("acl_set_entry (acl_set_permset)"); - return -1; + return ACL_ERROR; } if (entry_tag == ACL_USER || entry_tag == ACL_GROUP) { @@ -174,84 +299,186 @@ int acl_set_entry(acl_t* aclp, void* entry_qual = acl_get_qualifier(entry); if (entry_qual == (void*)NULL) { perror("acl_set_entry (acl_get_qualifier)"); - return -1; + return ACL_ERROR; } int sq_result = acl_set_qualifier(new_entry, entry_qual); - if (sq_result == -1) { + if (sq_result == ACL_ERROR) { perror("acl_set_entry (acl_set_qualifier)"); - return -1; + return ACL_ERROR; } } - return 1; + return ACL_SUCCESS; } -int acl_entry_count(acl_t* acl) { - /* - * Return the number of entries in acl, or -1 on error. - */ +/** + * @brief Determine the number of entries in the given ACL. + * + * @param acl + * The ACL to inspect. + * + * @return Either the non-negative number of entries in @c acl, or + * @c ACL_ERROR on error. + */ +int acl_entry_count(acl_t acl) { + acl_entry_t entry; int entry_count = 0; - int result = acl_get_entry(*acl, ACL_FIRST_ENTRY, &entry); + int result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (result == 1) { + while (result == ACL_SUCCESS) { entry_count++; - result = acl_get_entry(*acl, ACL_NEXT_ENTRY, &entry); + result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); } - if (result == -1) { - perror("acl_is_minimal (acl_get_entry)"); - return -1; + if (result == ACL_ERROR) { + perror("acl_entry_count (acl_get_entry)"); + return ACL_ERROR; } return entry_count; } -int acl_is_minimal(acl_t* acl) { - /* An ACL is minimal if it has fewer than four entries. Return 0 for - * false, 1 for true, and -1 on error. - */ + +/** + * @brief Determine whether or not the given ACL is minimal. + * + * An ACL is minimal if it has fewer than four entries. + * + * @param acl + * The ACL whose minimality is in question. + * + * @return + * - @c ACL_SUCCESS - @c acl is minimal + * - @c ACL_FAILURE - @c acl is not minimal + * - @c ACL_ERROR - Unexpected library error + */ +int acl_is_minimal(acl_t acl) { int ec = acl_entry_count(acl); - if (ec == -1) { + + if (ec == ACL_ERROR) { perror("acl_is_minimal (acl_entry_count)"); - return -1; + return ACL_ERROR; } if (ec < 4) { - return 1; + return ACL_SUCCESS; } else { - return 0; + return ACL_FAILURE; } } -int any_can_execute(const char* path) { - /* Returns 1 if any ACL entry has execute access, 0 if none do, and - * -1 on error. - */ + +/** + * @brief Determine whether the given ACL's mask denies execute. + * + * @param acl + * The ACL whose mask we want to check. + * + * @return + * - @c ACL_SUCCESS - The @c acl has a mask which denies execute. + * - @c ACL_FAILURE - The @c acl has a mask which does not deny execute. + * - @c ACL_ERROR - Unexpected library error. + */ +int acl_execute_masked(acl_t acl) { + + acl_entry_t entry; + int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); + + while (ge_result == ACL_SUCCESS) { + acl_tag_t tag = ACL_UNDEFINED_TAG; + int tag_result = acl_get_tag_type(entry, &tag); + + if (tag_result == ACL_ERROR) { + perror("acl_execute_masked (acl_get_tag_type)"); + return ACL_ERROR; + } + + if (tag == ACL_MASK) { + /* This is the mask entry, get its permissions, and see if + execute is specified. */ + acl_permset_t permset; + + int ps_result = acl_get_permset(entry, &permset); + if (ps_result == ACL_ERROR) { + perror("acl_execute_masked (acl_get_permset)"); + return ACL_ERROR; + } + + int gp_result = acl_get_perm(permset, ACL_EXECUTE); + if (gp_result == ACL_ERROR) { + perror("acl_execute_masked (acl_get_perm)"); + return ACL_ERROR; + } + + if (gp_result == ACL_FAILURE) { + /* No execute bit set in the mask; execute not allowed. */ + return ACL_SUCCESS; + } + } + + ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); + } + + return ACL_FAILURE; +} + + + +/** + * @brief Determine whether @c path is executable (by anyone) or a + * directory. + * + * This is used as part of the heuristic to determine whether or not + * we should mask the execute bit when inheriting an ACL. If @c path + * is a directory, the answer is a clear-cut yes. This behavior is + * modeled after the capital 'X' perms of setfacl. + * + * If @c path is a file, we check the @a effective permissions, + * contrary to what setfacl does. + * + * @param path + * The path to check. + * + * @return + * - @c ACL_SUCCESS - @c path is a directory, or someone has effective + execute permissions. + * - @c ACL_FAILURE - @c path is a regular file and nobody can execute + it. + * - @c ACL_ERROR - Unexpected library error. + */ +int any_can_execute_or_dir(const char* path) { + + if (is_path_directory(path)) { + /* That was easy... */ + return ACL_SUCCESS; + } + acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); if (acl == (acl_t)NULL) { - return 0; + perror("any_can_execute_or_dir (acl_get_file)"); + return ACL_ERROR; } /* Our return value. */ - int result = 0; + int result = ACL_FAILURE; - if (acl_is_minimal(&acl)) { + if (acl_is_minimal(acl)) { mode_t mode = get_mode(path); if (mode & (S_IXUSR | S_IXOTH | S_IXGRP)) { - result = 1; + result = ACL_SUCCESS; goto cleanup; } else { - result = 0; + result = ACL_FAILURE; goto cleanup; } } @@ -259,34 +486,54 @@ int any_can_execute(const char* path) { acl_entry_t entry; int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { + /* The first thing we do is check to see if this is a mask + entry. If it is, we skip it entirely. */ + acl_tag_t tag = ACL_UNDEFINED_TAG; + int tag_result = acl_get_tag_type(entry, &tag); + + if (tag_result == ACL_ERROR) { + perror("any_can_execute_or_dir (acl_get_tag_type)"); + result = ACL_ERROR; + goto cleanup; + } + + if (tag == ACL_MASK) { + ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); + continue; + } + + /* Ok, so it's not a mask entry. Check the execute perms. */ acl_permset_t permset; int ps_result = acl_get_permset(entry, &permset); - if (ps_result == -1) { - perror("any_can_execute (acl_get_permset)"); - result = -1; + if (ps_result == ACL_ERROR) { + perror("any_can_execute_or_dir (acl_get_permset)"); + result = ACL_ERROR; goto cleanup; } int gp_result = acl_get_perm(permset, ACL_EXECUTE); - if (gp_result == -1) { - perror("any_can_execute (acl_get_perm)"); - result = -1; + if (gp_result == ACL_ERROR) { + perror("any_can_execute_or_dir (acl_get_perm)"); + result = ACL_ERROR; goto cleanup; } - if (gp_result == 1) { - result = 1; - goto cleanup; + if (gp_result == ACL_SUCCESS) { + /* Only return ACL_SUCCESS if this execute bit is not masked. */ + if (acl_execute_masked(acl) != ACL_SUCCESS) { + result = ACL_SUCCESS; + goto cleanup; + } } ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); } - if (ge_result == -1) { - perror("any_can_execute (acl_get_entry)"); - result = -1; + if (ge_result == ACL_ERROR) { + perror("any_can_execute_or_dir (acl_get_entry)"); + result = ACL_ERROR; goto cleanup; } @@ -296,77 +543,93 @@ int any_can_execute(const char* path) { } -int inherit_default_acl(const char* path, const char* parent) { - /* Inherit the default ACL from parent to path. This overwrites any - * existing default ACL. Returns 1 for success, 0 for failure, and - * -1 on error. - */ - /* Our return value. */ - int result = 1; +/** + * @brief Set @c acl as the default ACL on @c path if it's a directory. + * + * This overwrites any existing default ACL on @c path. If no default + * ACL exists, then one is created. If @c path is not a directory, we + * return ACL_FAILURE but no error is raised. + * + * @param path + * The target directory whose ACL we wish to replace or create. + * + * @param acl + * The ACL to set as default on @c path. + * + * @return + * - @c ACL_SUCCESS - The default ACL was assigned successfully. + * - @c ACL_FAILURE - If @c path is not a directory. + * - @c ACL_ERROR - Unexpected library error. + */ +int assign_default_acl(const char* path, acl_t acl) { if (path == NULL) { errno = ENOENT; - return -1; - } - - if (!is_directory(path) || !is_directory(parent)) { - return 0; + return ACL_ERROR; } - acl_t parent_acl = acl_get_file(parent, ACL_TYPE_DEFAULT); - if (parent_acl == (acl_t)NULL) { - return 0; + if (!is_path_directory(path)) { + return ACL_FAILURE; } - acl_t path_acl = acl_dup(parent_acl); + /* Our return value; success unless something bad happens. */ + int result = ACL_SUCCESS; + acl_t path_acl = acl_dup(acl); if (path_acl == (acl_t)NULL) { perror("inherit_default_acl (acl_dup)"); - acl_free(parent_acl); - return -1; + return ACL_ERROR; /* Nothing to clean up in this case. */ } int sf_result = acl_set_file(path, ACL_TYPE_DEFAULT, path_acl); if (sf_result == -1) { perror("inherit_default_acl (acl_set_file)"); - result = -1; - goto cleanup; + result = ACL_ERROR; } - cleanup: acl_free(path_acl); return result; } + +/** + * @brief Remove @c ACL_USER, @c ACL_GROUP, and @c ACL_MASK entries + * from the given path. + * + * @param path + * The path whose ACLs we want to wipe. + * + * @return + * - @c ACL_SUCCESS - The ACLs were wiped successfully, or none + * existed in the first place. + * - @c ACL_ERROR - Unexpected library error. + */ int wipe_acls(const char* path) { - /* Remove ACL_USER, ACL_GROUP, and ACL_MASK entries from - path. Returns 1 for success, 0 for failure, and -1 on error. */ if (path == NULL) { errno = ENOENT; - return -1; + return ACL_ERROR; } - /* Finally, remove individual named/mask entries. */ acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); if (acl == (acl_t)NULL) { perror("wipe_acls (acl_get_file)"); - return -1; + return ACL_ERROR; } /* Our return value. */ - int result = 1; + int result = ACL_SUCCESS; acl_entry_t entry; int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { int d_result = acl_delete_entry(acl, entry); - if (d_result == -1) { + if (d_result == ACL_ERROR) { perror("wipe_acls (acl_delete_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -375,16 +638,16 @@ int wipe_acls(const char* path) { /* Catches the first acl_get_entry as well as the ones at the end of the loop. */ - if (ge_result == -1) { + if (ge_result == ACL_ERROR) { perror("wipe_acls (acl_get_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } int sf_result = acl_set_file(path, ACL_TYPE_ACCESS, acl); - if (sf_result == -1) { + if (sf_result == ACL_ERROR) { perror("wipe_acls (acl_set_file)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -394,17 +657,59 @@ int wipe_acls(const char* path) { } -int apply_default_acl(const char* path) { - /* Really apply the default ACL by looping through it. Returns one - * for success, zero for failure (i.e. no ACL), and -1 on unexpected - * errors. - */ + +/** + * @brief Apply parent default ACL to a path. + * + * This overwrites any existing ACLs on @c path. + * + * @param path + * The path whose ACL we would like to reset to its default. + * + * @param no_exec_mask + * The value (either true or false) of the --no-exec-mask flag. + * + * @return + * - @c ACL_SUCCESS - The parent default ACL was inherited successfully. + * - @c ACL_FAILURE - The target path is not a regular file/directory, + * or the parent of @c path is not a directory. + * - @c ACL_ERROR - Unexpected library error. + */ +int apply_default_acl(const char* path, bool no_exec_mask) { + if (path == NULL) { - return 0; + errno = ENOENT; + return ACL_ERROR; + } + + /* Refuse to operate on hard links, which can be abused by an + * attacker to trick us into changing the ACL on a file we didn't + * intend to; namely the "target" of the hard link. To truly prevent + * that sort of mischief, we should be using file descriptors for + * the target and its parent directory. Then modulo a tiny race + * condition, we would be sure that "path" and "parent" don't change + * their nature between the time that we test them and when we + * utilize them. For contrast, the same attacker is free to replace + * "path" with a hard link after is_hardlink_safe() has returned + * "true" below. + * + * Unfortunately, our API is lacking in this area. For example, + * acl_set_fd() is only capable of setting the ACL_TYPE_ACCESS list, + * and not the ACL_TYPE_DEFAULT. Apparently the only way to operate + * on default ACLs is through the path name, which is inherently + * unreliable since the acl_*_file() calls themselves might follow + * links (both hard and symbolic). + * + * Some improvement could still be made by using descriptors where + * possible -- this would shrink the exploit window -- but for now + * we use a naive implementation that only keeps honest men honest. + */ + if (!is_hardlink_safe(path)) { + return ACL_FAILURE; } - if (!is_regular_file(path) && !is_directory(path)) { - return 0; + if (!is_regular_file(path) && !is_path_directory(path)) { + return ACL_FAILURE; } /* dirname mangles its argument */ @@ -413,33 +718,41 @@ int apply_default_acl(const char* path) { path_copy[PATH_MAX-1] = 0; char* parent = dirname(path_copy); - if (!is_directory(parent)) { + if (!is_path_directory(parent)) { /* Make sure dirname() did what we think it did. */ - return 0; + return ACL_FAILURE; } - int ace_result = any_can_execute(path); - if (ace_result == -1) { - perror("apply_default_acl (any_can_execute)"); - return -1; - } + /* Default to not masking the exec bit; i.e. applying the default + ACL literally. If --no-exec-mask was not specified, then we try + to "guess" whether or not to mask the exec bit. */ + bool allow_exec = true; + + if (!no_exec_mask) { + int ace_result = any_can_execute_or_dir(path); + + if (ace_result == ACL_ERROR) { + perror("apply_default_acl (any_can_execute_or_dir)"); + return ACL_ERROR; + } - bool allow_exec = (bool)ace_result; + allow_exec = (bool)ace_result; + } acl_t defacl = acl_get_file(parent, ACL_TYPE_DEFAULT); if (defacl == (acl_t)NULL) { perror("apply_default_acl (acl_get_file)"); - return -1; + return ACL_ERROR; } /* Our return value. */ - int result = 1; + int result = ACL_SUCCESS; int wipe_result = wipe_acls(path); - if (wipe_result == -1) { + if (wipe_result == ACL_ERROR) { perror("apply_default_acl (wipe_acls)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -448,27 +761,28 @@ int apply_default_acl(const char* path) { acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); if (acl == (acl_t)NULL) { perror("apply_default_acl (acl_get_file)"); - return -1; + result = ACL_ERROR; + goto cleanup; } /* If it's a directory, inherit the parent's default. */ - int inherit_result = inherit_default_acl(path, parent); - if (inherit_result == -1) { + int inherit_result = assign_default_acl(path, defacl); + if (inherit_result == ACL_ERROR) { perror("apply_default_acl (inherit_acls)"); - result = -1; + result = ACL_ERROR; goto cleanup; } acl_entry_t entry; int ge_result = acl_get_entry(defacl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { acl_tag_t tag = ACL_UNDEFINED_TAG; int tag_result = acl_get_tag_type(entry, &tag); - if (tag_result == -1) { - perror("has_default_tag_acl (acl_get_tag_type)"); - result = -1; + if (tag_result == ACL_ERROR) { + perror("apply_default_acl (acl_get_tag_type)"); + result = ACL_ERROR; goto cleanup; } @@ -476,9 +790,9 @@ int apply_default_acl(const char* path) { /* We've got an entry/tag from the default ACL. Get its permset. */ acl_permset_t permset; int ps_result = acl_get_permset(entry, &permset); - if (ps_result == -1) { + if (ps_result == ACL_ERROR) { perror("apply_default_acl (acl_get_permset)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -487,31 +801,47 @@ int apply_default_acl(const char* path) { tag == ACL_USER_OBJ || tag == ACL_GROUP_OBJ || tag == ACL_OTHER) { + if (!allow_exec) { /* The mask doesn't affect acl_user_obj, acl_group_obj (in minimal ACLs) or acl_other entries, so if execute should be masked, we have to do it manually. */ int d_result = acl_delete_perm(permset, ACL_EXECUTE); - if (d_result == -1) { + if (d_result == ACL_ERROR) { perror("apply_default_acl (acl_delete_perm)"); - result = -1; + result = ACL_ERROR; goto cleanup; } int sp_result = acl_set_permset(entry, permset); - if (sp_result == -1) { + if (sp_result == ACL_ERROR) { perror("apply_default_acl (acl_set_permset)"); - result = -1; + result = ACL_ERROR; goto cleanup; } } } - /* Finally, add the permset to the access ACL. */ + /* Finally, add the permset to the access ACL. It's actually + * important that we pass in the address of "acl" here, and not + * "acl" itself. Why? The call to acl_create_entry() within + * acl_set_entry() can allocate new memory for the entry. + * Sometimes that can be done in-place, in which case everything + * is cool and the new memory gets released when we call + * acl_free(acl). + * + * But occasionally, the whole ACL structure will have to be moved + * in order to allocate the extra space. When that happens, + * acl_create_entry() modifies the pointer it was passed (in this + * case, &acl) to point to the new location. We want to call + * acl_free() on the new location, and since acl_free() gets + * called right here, we need acl_create_entry() to update the + * value of "acl". To do that, it needs the address of "acl". + */ int set_result = acl_set_entry(&acl, entry); - if (set_result == -1) { + if (set_result == ACL_ERROR) { perror("apply_default_acl (acl_set_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -520,16 +850,16 @@ int apply_default_acl(const char* path) { /* Catches the first acl_get_entry as well as the ones at the end of the loop. */ - if (ge_result == -1) { + if (ge_result == ACL_ERROR) { perror("apply_default_acl (acl_get_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } int sf_result = acl_set_file(path, ACL_TYPE_ACCESS, acl); - if (sf_result == -1) { + if (sf_result == ACL_ERROR) { perror("apply_default_acl (acl_set_file)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -539,10 +869,15 @@ int apply_default_acl(const char* path) { } -void usage(char* program_name) { - /* - * Print usage information. - */ + +/** + * @brief Display program usage information. + * + * @param program_name + * The program name to use in the output. + * + */ +void usage(const char* program_name) { printf("Apply any applicable default ACLs to the given files or " "directories.\n\n"); printf("Usage: %s [flags] [ [ ...]]\n\n", @@ -550,46 +885,104 @@ void usage(char* program_name) { printf("Flags:\n"); printf(" -h, --help Print this help message\n"); printf(" -r, --recursive Act on any given directories recursively\n"); + printf(" -x, --no-exec-mask Apply execute permissions unconditionally\n"); + + return; } +/** + * @brief Wrapper around @c apply_default_acl() for use with @c nftw(). + * + * For parameter information, see the @c nftw man page. + * + * @return If the ACL was applied to @c target successfully, we return + * @c FTW_CONTINUE to signal to @ nftw() that we should proceed onto + * the next file or directory. Otherwise, we return @c FTW_STOP to + * signal failure. + * + */ int apply_default_acl_nftw(const char *target, + const struct stat *s, + int info, + struct FTW *ftw) { + + bool app_result = apply_default_acl(target, false); + if (app_result) { + return FTW_CONTINUE; + } + else { + return FTW_STOP; + } +} + + + +/** + * @brief Wrapper around @c apply_default_acl() for use with @c nftw(). + * + * This is identical to @c apply_default_acl_nftw(), except it passes + * @c true to @c apply_default_acl() as its no_exec_mask argument. + * + */ +int apply_default_acl_nftw_x(const char *target, const struct stat *s, int info, struct FTW *ftw) { - /* A wrapper around the apply_default_acl() function for use with - * nftw(). We need to adjust the return value so that nftw() doesn't - * think we've failed. - */ - bool reapp_result = apply_default_acl(target); - if (reapp_result) { - return 0; + + bool app_result = apply_default_acl(target, true); + if (app_result) { + return FTW_CONTINUE; } else { - return 1; + return FTW_STOP; } } -bool apply_default_acl_recursive(const char *target) { - /* Attempt to apply default ACLs recursively. If target is a - * directory, we recurse through its entries. If not, we just - * apply the default ACL to target. - * - * We ignore symlinks for consistency with chmod -r. - * - */ - if (!is_directory(target)) { - return apply_default_acl(target); + +/** + * @brief Recursive version of @c apply_default_acl(). + * + * If @c target is a directory, we use @c nftw() to call @c + * apply_default_acl() recursively on all of its children. Otherwise, + * we just delegate to @c apply_default_acl(). + * + * We ignore symlinks for consistency with chmod -r. + * + * @param target + * The root (path) of the recursive application. + * + * @param no_exec_mask + * The value (either true or false) of the --no-exec-mask flag. + * + * @return + * If @c target is not a directory, we return the result of + * calling @c apply_default_acl() on @c target. Otherwise, we convert + * the return value of @c nftw(). If @c nftw() succeeds (returns 0), + * then we return @c true. Otherwise, we return @c false. + * \n\n + * If there is an error, it will be reported via @c perror, but + * we still return @c false. + */ +bool apply_default_acl_recursive(const char *target, bool no_exec_mask) { + + if (!is_path_directory(target)) { + return apply_default_acl(target, no_exec_mask); } int max_levels = 256; int flags = FTW_PHYS; /* Don't follow links. */ - int nftw_result = nftw(target, - apply_default_acl_nftw, - max_levels, - flags); + /* There are two separate functions that could be passed to + nftw(). One passes no_exec_mask = true to apply_default_acl(), + and the other passes no_exec_mask = false. Since the function we + pass to nftw() cannot have parameters, we have to create separate + options and make the decision here. */ + int (*fn)(const char *, const struct stat *, int, struct FTW *) = NULL; + fn = no_exec_mask ? apply_default_acl_nftw_x : apply_default_acl_nftw; + + int nftw_result = nftw(target, fn, max_levels, flags); if (nftw_result == 0) { /* Success */ @@ -608,28 +1001,36 @@ bool apply_default_acl_recursive(const char *target) { } + +/** + * @brief Call apply_default_acl (possibly recursively) on each + * command-line argument. + * + * @return Either @c EXIT_FAILURE or @c EXIT_SUCCESS. If everything + * goes as expected, we return @c EXIT_SUCCESS. Otherwise, we return + * @c EXIT_FAILURE. + */ int main(int argc, char* argv[]) { - /* - * Call apply_default_acl on each command-line argument. - */ + if (argc < 2) { usage(argv[0]); return EXIT_FAILURE; } - bool recursive = false; + bool no_exec_mask = false; struct option long_options[] = { /* These options set a flag. */ {"help", no_argument, NULL, 'h'}, {"recursive", no_argument, NULL, 'r'}, + {"no-exec-mask", no_argument, NULL, 'x'}, {NULL, 0, NULL, 0} }; int opt = 0; - while ((opt = getopt_long(argc, argv, "hr", long_options, NULL)) != -1) { + while ((opt = getopt_long(argc, argv, "hrx", long_options, NULL)) != -1) { switch (opt) { case 'h': usage(argv[0]); @@ -637,6 +1038,9 @@ int main(int argc, char* argv[]) { case 'r': recursive = true; break; + case 'x': + no_exec_mask = true; + break; default: usage(argv[0]); return EXIT_FAILURE; @@ -650,12 +1054,23 @@ int main(int argc, char* argv[]) { const char* target = argv[arg_index]; bool reapp_result = false; + /* Make sure we can access the given path before we go out of our + * way to please it. Doing this check outside of + * apply_default_acl() lets us spit out a better error message for + * typos, too. + */ + if (!path_accessible(target)) { + fprintf(stderr, "%s: %s: No such file or directory\n", argv[0], target); + result = EXIT_FAILURE; + continue; + } + if (recursive) { - reapp_result = apply_default_acl_recursive(target); + reapp_result = apply_default_acl_recursive(target, no_exec_mask); } else { - /* It's either normal file, or we're not operating recursively. */ - reapp_result = apply_default_acl(target); + /* It's either a normal file, or we're not operating recursively. */ + reapp_result = apply_default_acl(target, no_exec_mask); } if (!reapp_result) {