X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FRoots%2FSimple.hs;h=0a1debff0a0b1db653efabdf2be00ce9a4b91ed4;hb=59c49750fd2455574fe4e67ddd7e67a20321c8a8;hp=44d3d62112d2c4f339fa16b65c143e65ed5bb83a;hpb=fe73028041fe3becce6ce1ff268181d55d54a011;p=numerical-analysis.git diff --git a/src/Roots/Simple.hs b/src/Roots/Simple.hs index 44d3d62..0a1debf 100644 --- a/src/Roots/Simple.hs +++ b/src/Roots/Simple.hs @@ -18,9 +18,11 @@ import Normed import qualified Roots.Fast as F import NumericPrelude hiding (abs) -import Algebra.Absolute -import Algebra.Field -import Algebra.Ring +import qualified Algebra.Absolute as Absolute +import Algebra.Absolute (abs) +import qualified Algebra.Field as Field +import qualified Algebra.RealField as RealField +import qualified Algebra.RealRing as RealRing -- | Does the (continuous) function @f@ have a root on the interval -- [a,b]? If f(a) <] 0 and f(b) ]> 0, we know that there's a root in @@ -41,11 +43,7 @@ import Algebra.Ring -- >>> has_root cos (-2) 2 (Just 0.001) -- True -- -has_root :: (Algebra.Field.C a, - Ord a, - Algebra.Ring.C b, - Algebra.Absolute.C b, - Ord b) +has_root :: (RealField.C a, RealRing.C b) => (a -> b) -- ^ The function @f@ -> a -- ^ The \"left\" endpoint, @a@ -> a -- ^ The \"right\" endpoint, @b@ @@ -75,11 +73,7 @@ has_root f a b epsilon = -- >>> bisect sin (-1) 1 0.001 -- Just 0.0 -- -bisect :: (Algebra.Field.C a, - Ord a, - Algebra.Ring.C b, - Algebra.Absolute.C b, - Ord b) +bisect :: (RealField.C a, RealRing.C b) => (a -> b) -- ^ The function @f@ whose root we seek -> a -- ^ The \"left\" endpoint of the interval, @a@ -> a -- ^ The \"right\" endpoint of the interval, @b@ @@ -93,10 +87,7 @@ bisect f a b epsilon = -- at x0. We delegate to the version that returns the number of -- iterations and simply discard the number of iterations. -- -fixed_point :: (Normed a, - Algebra.Field.C b, - Algebra.Absolute.C b, - Ord b) +fixed_point :: (Normed a, RealField.C b) => (a -> a) -- ^ The function @f@ to iterate. -> b -- ^ The tolerance, @epsilon@. -> a -- ^ The initial value @x0@. @@ -109,10 +100,7 @@ fixed_point f epsilon x0 = -- the function @f@ with the search starting at x0 and tolerance -- @epsilon@. We delegate to the version that returns the number of -- iterations and simply discard the fixed point. -fixed_point_iteration_count :: (Normed a, - Algebra.Field.C b, - Algebra.Absolute.C b, - Ord b) +fixed_point_iteration_count :: (Normed a, RealField.C b) => (a -> a) -- ^ The function @f@ to iterate. -> b -- ^ The tolerance, @epsilon@. -> a -- ^ The initial value @x0@. @@ -130,10 +118,7 @@ fixed_point_iteration_count f epsilon x0 = -- -- This is used to determine the rate of convergence. -- -fixed_point_error_ratios :: (Normed a, - Algebra.Field.C b, - Algebra.Absolute.C b, - Ord b) +fixed_point_error_ratios :: (Normed a, RealField.C b) => (a -> a) -- ^ The function @f@ to iterate. -> a -- ^ The initial value @x0@. -> a -- ^ The true solution, @x_star@. @@ -160,7 +145,7 @@ fixed_point_error_ratios f x0 x_star p = -- >>> tail $ take 4 $ newton_iterations f f' 2 -- [1.6806282722513088,1.4307389882390624,1.2549709561094362] -- -newton_iterations :: (Algebra.Field.C a) +newton_iterations :: (Field.C a) => (a -> a) -- ^ The function @f@ whose root we seek -> (a -> a) -- ^ The derivative of @f@ -> a -- ^ Initial guess, x-naught @@ -195,7 +180,7 @@ newton_iterations f f' x0 = -- >>> abs (f root) < eps -- True -- -newtons_method :: (Algebra.Field.C a, Algebra.Absolute.C a, Ord a) +newtons_method :: (RealField.C a) => (a -> a) -- ^ The function @f@ whose root we seek -> (a -> a) -- ^ The derivative of @f@ -> a -- ^ The tolerance epsilon @@ -245,7 +230,7 @@ iterate2 f x0 x1 = -- >>> take 4 $ secant_iterations f 2 1 -- [2.0,1.0,1.0161290322580645,1.190577768676638] -- -secant_iterations :: (Algebra.Field.C a) +secant_iterations :: (Field.C a) => (a -> a) -- ^ The function @f@ whose root we seek -> a -- ^ Initial guess, x-naught -> a -- ^ Second initial guess, x-one @@ -273,7 +258,7 @@ secant_iterations f x0 x1 = -- >>> abs (f root) < (1/10^9) -- True -- -secant_method :: (Algebra.Field.C a, Algebra.Absolute.C a, Ord a) +secant_method :: (RealField.C a) => (a -> a) -- ^ The function @f@ whose root we seek -> a -- ^ The tolerance epsilon -> a -- ^ Initial guess, x-naught