X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FRoots%2FFast.hs;h=f7cde8a82a70f3f98605ab87fc94fae5a59147dc;hb=04f56a8882bb0c574b603f8c3fed9481ea934f7f;hp=78c299ad6a2cc39629b409bff5eed86787a3ca20;hpb=59c49750fd2455574fe4e67ddd7e67a20321c8a8;p=numerical-analysis.git diff --git a/src/Roots/Fast.hs b/src/Roots/Fast.hs index 78c299a..f7cde8a 100644 --- a/src/Roots/Fast.hs +++ b/src/Roots/Fast.hs @@ -14,7 +14,8 @@ import Normed import NumericPrelude hiding (abs) import qualified Algebra.Absolute as Absolute -import qualified Algebra.Field as Field +import qualified Algebra.Additive as Additive +import qualified Algebra.Algebraic as Algebraic import qualified Algebra.RealRing as RealRing import qualified Algebra.RealField as RealField @@ -98,6 +99,54 @@ bisect f a b epsilon f_of_a f_of_b +trisect :: (RealField.C a, + RealRing.C b, + Absolute.C b) + => (a -> b) -- ^ The function @f@ whose root we seek + -> a -- ^ The \"left\" endpoint of the interval, @a@ + -> a -- ^ The \"right\" endpoint of the interval, @b@ + -> a -- ^ The tolerance, @epsilon@ + -> Maybe b -- ^ Precomputed f(a) + -> Maybe b -- ^ Precomputed f(b) + -> Maybe a +trisect f a b epsilon f_of_a f_of_b + -- We pass @epsilon@ to the 'has_root' function because if we want a + -- result within epsilon of the true root, we need to know that + -- there *is* a root within an interval of length epsilon. + | not (has_root f a b (Just epsilon) (Just f_of_a') (Just f_of_b')) = Nothing + | f_of_a' == 0 = Just a + | f_of_b' == 0 = Just b + | otherwise = + -- Use a 'prime' just for consistency. + let (a', b', fa', fb') = + if (has_root f d b (Just epsilon) (Just f_of_d') (Just f_of_b')) + then (d, b, f_of_d', f_of_b') + else + if (has_root f c d (Just epsilon) (Just f_of_c') (Just f_of_d')) + then (c, d, f_of_c', f_of_d') + else (a, c, f_of_a', f_of_c') + in + if (b-a) < 2*epsilon + then Just ((b+a)/2) + else trisect f a' b' epsilon (Just fa') (Just fb') + where + -- Compute f(a) and f(b) only if needed. + f_of_a' = case f_of_a of + Nothing -> f a + Just v -> v + + f_of_b' = case f_of_b of + Nothing -> f b + Just v -> v + + c = (2*a + b) / 3 + + d = (a + 2*b) / 3 + + f_of_c' = f c + f_of_d' = f d + + -- | Iterate the function @f@ with the initial guess @x0@ in hopes of -- finding a fixed point. @@ -116,9 +165,9 @@ fixed_point_iterations f x0 = -- We also return the number of iterations required. -- fixed_point_with_iterations :: (Normed a, - Field.C b, - Absolute.C b, - Ord b) + Additive.C a, + RealField.C b, + Algebraic.C b) => (a -> a) -- ^ The function @f@ to iterate. -> b -- ^ The tolerance, @epsilon@. -> a -- ^ The initial value @x0@.