X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FNormed.hs;h=21c275fc8ecdecadcc849c65b45f6fe02e0c3d0d;hb=ae914d13235a4582077a5cb2b1edd630d9c6ad62;hp=f339ebfd6757a86123f8111c4cb1bb7f5ef35534;hpb=0a80879b886f592d663ace50eb78fa002facc1a3;p=numerical-analysis.git diff --git a/src/Normed.hs b/src/Normed.hs index f339ebf..21c275f 100644 --- a/src/Normed.hs +++ b/src/Normed.hs @@ -8,18 +8,32 @@ where import BigFloat -import NumericPrelude hiding (abs) -import Algebra.Absolute (abs) -import qualified Algebra.Absolute as Absolute -import qualified Algebra.Algebraic as Algebraic -import qualified Algebra.RealField as RealField -import qualified Algebra.ToInteger as ToInteger +import NumericPrelude hiding ( abs ) +import Algebra.Absolute ( abs ) +import qualified Algebra.Absolute as Absolute ( C ) +import qualified Algebra.Algebraic as Algebraic ( C ) +import Algebra.Algebraic ( root ) +import qualified Algebra.RealField as RealField ( C ) +import qualified Algebra.ToInteger as ToInteger ( C ) +import qualified Algebra.ToRational as ToRational ( C ) +import Data.Vector.Fixed ( S, Z ) +import qualified Data.Vector.Fixed as V ( + Arity, + map, + maximum ) +import Data.Vector.Fixed.Boxed ( Vec ) +import Linear.Vector ( element_sum ) + + +-- | Instances of the 'Normed' class know how to compute their own +-- p-norms for p=1,2,...,infinity. +-- class Normed a where norm_p :: (ToInteger.C c, Algebraic.C b, Absolute.C b) => c -> a -> b norm_infty :: (RealField.C b) => a -> b - -- | The "usual" norm. Defaults to the Euclidean norm. + -- | The \"usual\" norm. Defaults to the 2-norm. norm :: (Algebraic.C b, Absolute.C b) => a -> b norm = norm_p (2 :: Integer) @@ -43,3 +57,38 @@ instance Normed Float where instance Normed Double where norm_p _ = abs . fromRational' . toRational norm_infty = abs . fromRational' . toRational + + +-- | 'Normed' instance for vectors of length zero. These are easy. +instance Normed (Vec Z a) where + norm_p _ = const (fromInteger 0) + norm_infty = const (fromInteger 0) + + +-- | 'Normed' instance for vectors of length greater than zero. We +-- need to know that the length is non-zero in order to invoke +-- V.maximum. We will generally be working with n-by-1 /matrices/ +-- instead of vectors, but sometimes it's convenient to have these +-- instances anyway. +-- +-- Examples: +-- +-- >>> import Data.Vector.Fixed (mk3) +-- >>> import Linear.Vector (Vec3) +-- >>> let b = mk3 1 2 3 :: Vec3 Double +-- >>> norm_p 1 b :: Double +-- 6.0 +-- >>> norm b == sqrt 14 +-- True +-- >>> norm_infty b :: Double +-- 3.0 +-- +instance (V.Arity n, Absolute.C a, ToRational.C a, Ord a) + => Normed (Vec (S n) a) where + norm_p p x = + (root p') $ element_sum $ V.map element_function x + where + element_function y = fromRational' $ (toRational y)^p' + p' = toInteger p + + norm_infty x = fromRational' $ toRational $ V.maximum $ V.map abs x