X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FMain.hs;h=5e10d6cfdc16146d7d8844de335558253c6ef5b2;hb=02df1d5763a5d2bfe750bbc30b5c001ee9b23b17;hp=8a1efdb76de21e6b94421e63e6ebd07630ff5990;hpb=769784e81d7fb70a131cd0523ff41e1cb56f4768;p=spline3.git diff --git a/src/Main.hs b/src/Main.hs index 8a1efdb..5e10d6c 100644 --- a/src/Main.hs +++ b/src/Main.hs @@ -1,31 +1,123 @@ +{-# LANGUAGE RecordWildCards, DoAndIfThenElse #-} + module Main where -import Data.Array.Repa ( - DIM3, - Z(..), - (:.)(..), +import Data.Maybe (fromJust) +import Control.Monad (when) +import qualified Data.Array.Repa as R +import Data.Maybe (isJust) +import GHC.Conc (getNumProcessors, setNumCapabilities) +import System.IO (hPutStrLn, stderr) +import System.Exit (exitSuccess, exitWith, ExitCode(..)) + +import CommandLine (Args(..), apply_args) +import ExitCodes +import Grid (zoom) +import Volumetric ( + bracket_array, + flip_x, + flip_y, + read_word16s, + round_array, + swap_bytes, + write_values_to_bmp, + write_word16s, + z_slice ) -import System.Environment (getArgs) -import Grid (make_grid, zoom) -import Values (read_values_3d, write_values_1d) +validate_args :: Args -> IO () +validate_args Args{..} = do + when (scale <= 0) $ do + hPutStrLn stderr "ERROR: scale must be greater than zero." + exitWith (ExitFailure exit_arg_not_positive) + + when (width <= 0) $ do + hPutStrLn stderr "ERROR: width must be greater than zero." + exitWith (ExitFailure exit_arg_not_positive) -mri_shape :: DIM3 -mri_shape = (Z :. 256 :. 256 :. 1) + when (height <= 0) $ do + hPutStrLn stderr "ERROR: height must be greater than zero." + exitWith (ExitFailure exit_arg_not_positive) + when (depth <= 0) $ do + hPutStrLn stderr "ERROR: depth must be greater than zero." + exitWith (ExitFailure exit_arg_not_positive) + case slice of + Just s -> + when (s < 0 || s > depth) $ do + hPutStrLn stderr "ERROR: slice must be between zero and depth." + exitWith (ExitFailure exit_arg_out_of_bounds) + Nothing -> return () main :: IO () main = do - args <- getArgs - let color = head args - let in_file = "./data/MRbrain.40." ++ color - let out_file = "MRbrain.40." ++ color ++ ".out" - mridata <- read_values_3d mri_shape in_file - - let g = make_grid 1 mridata - let output = zoom g (4,4,1) - write_values_1d output out_file + args@Args{..} <- apply_args + -- validate_args will simply exit if there's a problem. + validate_args args + + -- The first thing we do is set the number of processors. We get the + -- number of processors (cores) in the machine with + -- getNumProcessors, and set it with setNumCapabilities. This is so + -- we don't have to pass +RTS -Nfoo on the command line every time. + num_procs <- getNumProcessors + setNumCapabilities num_procs + + -- Determine whether we're doing 2d or 3d. If we're given a slice, + -- assume 2d. + let shape = (R.Z R.:. depth R.:. height R.:. width) :: R.DIM3 + + if (isJust slice) then + main2d args shape + else + main3d args shape + + exitSuccess + + where + + + +main3d :: Args -> R.DIM3 -> IO () +main3d Args{..} shape = do + let zoom_factor = (scale, scale, scale) + arr <- read_word16s input shape + let arr_swapped = swap_bytes arr + let arr_shaped = R.reshape shape arr_swapped + dbl_data <- R.computeUnboxedP $ R.map fromIntegral arr_shaped + raw_output <- zoom dbl_data zoom_factor + word16_output <- R.computeUnboxedP $ round_array raw_output + write_word16s output word16_output + + +main2d :: Args -> R.DIM3 -> IO () +main2d Args{..} shape = do + let zoom_factor = (1, scale, scale) + arr <- read_word16s input shape + arrSlice <- R.computeUnboxedP + $ z_slice (fromJust slice) + $ flip_x width + $ flip_y height + $ swap_bytes arr + let arrSlice' = R.reshape slice3d arrSlice + + -- If zoom isn't being inlined we need to extract the slice before hand, + -- and convert it to the require formed. + dbl_data <- R.computeUnboxedP $ R.map fromIntegral arrSlice' + raw_output <- zoom dbl_data zoom_factor + arrSlice0 <- R.computeUnboxedP $ z_slice 0 raw_output + + -- Make doubles from the thresholds which are given as Ints. + let lt = fromIntegral lower_threshold + let ut = fromIntegral upper_threshold + + let arr_bracketed = bracket_array lt ut arrSlice0 + values <- R.computeUnboxedP $ R.map fromIntegral arr_bracketed + write_values_to_bmp output values + + where + slice3d :: R.DIM3 + slice3d = (R.Z R.:. 1 R.:. height R.:. width)