X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FQR.hs;h=b628c125e2b0f3b3fc44c449917e8045d72f2dd7;hb=3c6f9a8f75456cddf31949a44ed2b5be9bc44a12;hp=58027bb0be7a8b574fe78bd437a683c1b30508e2;hpb=e01a21693319ed1bf888d543caf817e1c803a88b;p=numerical-analysis.git diff --git a/src/Linear/QR.hs b/src/Linear/QR.hs index 58027bb..b628c12 100644 --- a/src/Linear/QR.hs +++ b/src/Linear/QR.hs @@ -4,22 +4,28 @@ -- | QR factorization via Givens rotations. -- module Linear.QR ( + eigenvalues, + eigenvectors_symmetric, givens_rotator, qr ) where import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) -import Data.Vector.Fixed ( ifoldl ) +import Control.Arrow ( first ) +import Data.Vector.Fixed ( S, ifoldl ) import Data.Vector.Fixed.Cont ( Arity ) import NumericPrelude hiding ( (*) ) import Linear.Matrix ( + Col, Mat(..), (*), (!!!), construct, + diagonal, identity_matrix, + symmetric, transpose ) @@ -30,20 +36,52 @@ import Linear.Matrix ( -- -- Examples (Watkins, p. 193): -- --- >>> import Linear.Matrix ( Mat2, fromList ) +-- >>> import Normed ( Normed(..) ) +-- >>> import Linear.Vector ( Vec2, Vec3 ) +-- >>> import Linear.Matrix ( Mat2, Mat3, fromList, frobenius_norm ) +-- >>> import qualified Data.Vector.Fixed as V ( map ) +-- -- >>> let m = givens_rotator 0 1 1 1 :: Mat2 Double -- >>> let m2 = fromList [[1, -1],[1, 1]] :: Mat2 Double -- >>> m == (1 / (sqrt 2) :: Double) *> m2 -- True -- -givens_rotator :: forall m a. (Ring.C a, Algebraic.C a, Arity m) +-- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double +-- >>> let rot = givens_rotator 0 1 2.0 5.0 :: Mat2 Double +-- >>> ((transpose rot) * m) !!! (1,0) < 1e-12 +-- True +-- >>> let (Mat rows) = rot +-- >>> let (Mat cols) = transpose rot +-- >>> V.map norm rows :: Vec2 Double +-- fromList [1.0,1.0] +-- >>> V.map norm cols :: Vec2 Double +-- fromList [1.0,1.0] +-- +-- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double +-- >>> let rot = givens_rotator 1 2 6 (-4) :: Mat3 Double +-- >>> let ex_rot_r1 = [1,0,0] :: [Double] +-- >>> let ex_rot_r2 = [0,0.83205,-0.55470] :: [Double] +-- >>> let ex_rot_r3 = [0, 0.55470, 0.83205] :: [Double] +-- >>> let ex_rot = fromList [ex_rot_r1, ex_rot_r2, ex_rot_r3] :: Mat3 Double +-- >>> frobenius_norm ((transpose rot) - ex_rot) < 1e-4 +-- True +-- >>> ((transpose rot) * m) !!! (2,0) == 0 +-- True +-- >>> let (Mat rows) = rot +-- >>> let (Mat cols) = transpose rot +-- >>> V.map norm rows :: Vec3 Double +-- fromList [1.0,1.0,1.0] +-- >>> V.map norm cols :: Vec3 Double +-- fromList [1.0,1.0,1.0] +-- +givens_rotator :: forall m a. (Eq a, Ring.C a, Algebraic.C a, Arity m) => Int -> Int -> a -> a -> Mat m m a givens_rotator i j xi xj = construct f where xnorm = sqrt $ xi^2 + xj^2 - c = xi / xnorm - s = xj / xnorm + c = if xnorm == (fromInteger 0) then (fromInteger 1) else xi / xnorm + s = if xnorm == (fromInteger 0) then (fromInteger 0) else xj / xnorm f :: Int -> Int -> a f y z @@ -65,7 +103,43 @@ givens_rotator i j xi xj = -- factorization. We keep the pair updated by multiplying @q@ and -- @r@ by the new rotator (or its transpose). -- -qr :: forall m n a. (Arity m, Arity n, Algebraic.C a, Ring.C a) +-- We do not require that the diagonal elements of R are positive, +-- so our factorization is a little less unique than usual. +-- +-- Examples: +-- +-- >>> import Linear.Matrix +-- +-- >>> let m = fromList [[1,2],[1,3]] :: Mat2 Double +-- >>> let (q,r) = qr m +-- >>> let c = (1 / (sqrt 2 :: Double)) +-- >>> let ex_q = c *> (fromList [[1,-1],[1,1]] :: Mat2 Double) +-- >>> let ex_r = c *> (fromList [[2,5],[0,1]] :: Mat2 Double) +-- >>> frobenius_norm (q - ex_q) == 0 +-- True +-- >>> frobenius_norm (r - ex_r) == 0 +-- True +-- >>> let m' = q*r +-- >>> frobenius_norm (m - m') < 1e-10 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +-- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double +-- >>> let (q,r) = qr m +-- >>> frobenius_norm (m - (q*r)) < 1e-12 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +-- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double +-- >>> let (q,r) = qr m +-- >>> frobenius_norm (m - (q*r)) < 1e-12 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +qr :: forall m n a. (Arity m, Arity n, Eq a, Algebraic.C a, Ring.C a) => Mat m n a -> (Mat m m a, Mat m n a) qr matrix = ifoldl col_function initial_qr columns @@ -83,10 +157,119 @@ qr matrix = -- | Process the entries in a column, doing basically the same -- thing as col_dunction does. It updates the QR factorization, -- maybe, and returns the current one. - f col_idx (q,r) idx x - | idx <= col_idx = (q,r) -- leave it alone. - | otherwise = - (q*rotator, (transpose rotator)*r) + f col_idx (q,r) idx _ -- ignore the current element + | idx <= col_idx = (q,r) -- leave it alone + | otherwise = (q*rotator, (transpose rotator)*r) where + y = r !!! (idx, col_idx) rotator :: Mat m m a - rotator = givens_rotator col_idx idx (r !!! (idx, col_idx)) x + rotator = givens_rotator col_idx idx (r !!! (col_idx, col_idx)) y + + + +-- | Determine the eigenvalues of the given @matrix@ using the +-- iterated QR algorithm (see Golub and Van Loan, \"Matrix +-- Computations\"). +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) +-- >>> import Linear.Matrix ( frobenius_norm, fromList, identity_matrix ) +-- +-- >>> let m = fromList [[1,1],[-2,4]] :: Mat2 Double +-- >>> let actual = eigenvalues 1000 m +-- >>> let expected = fromList [[3],[2]] :: Col2 Double +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +-- >>> let m = identity_matrix :: Mat2 Double +-- >>> let actual = eigenvalues 10 m +-- >>> let expected = fromList [[1],[1]] :: Col2 Double +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +-- >>> let m = fromList [[0,1,0],[0,0,1],[1,-3,3]] :: Mat3 Double +-- >>> let actual = eigenvalues 1000 m +-- >>> let expected = fromList [[1],[1],[1]] :: Col3 Double +-- >>> frobenius_norm (actual - expected) < 1e-2 +-- True +-- +eigenvalues :: forall m a. (Arity m, Algebraic.C a, Eq a) + => Int + -> Mat (S m) (S m) a + -> Col (S m) a +eigenvalues iterations matrix = + diagonal (ut_approximation iterations) + where + ut_approximation :: Int -> Mat (S m) (S m) a + ut_approximation 0 = matrix + ut_approximation k = rk*qk where (qk,rk) = qr (ut_approximation (k-1)) + + +-- | Compute the eigenvalues and eigenvectors of a symmetric matrix +-- using an iterative QR algorithm. This is similar to what we do in +-- 'eigenvalues' except we also return the product of all \"Q\" +-- matrices that we have generated. This turns out to me the matrix +-- of eigenvectors when the original matrix is symmetric. For +-- references see Goluv and Van Loan, \"Matrix Computations\", or +-- \"Calculation of Gauss Quadrature Rules\" by Golub and Welsch. +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) +-- >>> import Linear.Matrix ( column', frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( identity_matrix, vec3d ) +-- >>> import Normed ( Normed(..) ) +-- +-- >>> let m = identity_matrix :: Mat3 Double +-- >>> let (vals, vecs) = eigenvectors_symmetric 100 m +-- >>> let expected_vals = fromList [[1],[1],[1]] :: Col3 Double +-- >>> let expected_vecs = m +-- >>> vals == expected_vals +-- True +-- >>> vecs == expected_vecs +-- True +-- +-- >>> let m = fromList [[3,2,4],[2,0,2],[4,2,3]] :: Mat3 Double +-- >>> let (vals, vecs) = eigenvectors_symmetric 1000 m +-- >>> let expected_vals = fromList [[8],[-1],[-1]] :: Col3 Double +-- >>> let v0' = vec3d (2, 1, 2) :: Col3 Double +-- >>> let v0 = (1 / (norm v0') :: Double) *> v0' +-- >>> let v1' = vec3d (-1, 2, 0) :: Col3 Double +-- >>> let v1 = (1 / (norm v1') :: Double) *> v1' +-- >>> let v2' = vec3d (-4, -2, 5) :: Col3 Double +-- >>> let v2 = (1 / (norm v2') :: Double) *> v2' +-- >>> frobenius_norm ((column' vecs 0) - v0) < 1e-12 +-- True +-- >>> frobenius_norm ((column' vecs 1) - v1) < 1e-12 +-- True +-- >>> frobenius_norm ((column' vecs 2) - v2) < 1e-12 +-- True +-- +eigenvectors_symmetric :: forall m a. (Arity m, Algebraic.C a, Eq a) + => Int + -> Mat (S m) (S m) a + -> (Col (S m) a, Mat (S m) (S m) a) +eigenvectors_symmetric iterations matrix + | iterations < 0 = error "negative iterations requested" + | iterations == 0 = (diagonal matrix, identity_matrix) + | not $ symmetric matrix = error "argument is not symmetric" + | otherwise = + (values, vectors) + where + -- | We think of \"T\" as an approximation to an + -- upper-triangular matrix from which we get our + -- eigenvalues. The matrix \"P\" is the product of all + -- previous \"Q\"s and its columns approximate the + -- eigenvectors. + tp_pair :: Int -> (Mat (S m) (S m) a, Mat (S m) (S m) a) + tp_pair 0 = (matrix, identity_matrix) + tp_pair k = (tk,pk) + where + (t_prev, p_prev) = tp_pair (k-1) + (qk,rk) = qr t_prev + tk = rk*qk + pk = p_prev*qk + + + (values, vectors) = (first diagonal) (tp_pair iterations)