X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FQR.hs;h=4c1c56446f836c348b1b7e65ad138fb650dd9ed3;hb=288455e9aade0b3a8abf138c4319beab3a0be705;hp=b628c125e2b0f3b3fc44c449917e8045d72f2dd7;hpb=3c6f9a8f75456cddf31949a44ed2b5be9bc44a12;p=numerical-analysis.git diff --git a/src/Linear/QR.hs b/src/Linear/QR.hs index b628c12..4c1c564 100644 --- a/src/Linear/QR.hs +++ b/src/Linear/QR.hs @@ -140,7 +140,8 @@ givens_rotator i j xi xj = -- True -- qr :: forall m n a. (Arity m, Arity n, Eq a, Algebraic.C a, Ring.C a) - => Mat m n a -> (Mat m m a, Mat m n a) + => Mat (S m) (S n) a + -> (Mat (S m) (S m) a, Mat (S m) (S n) a) qr matrix = ifoldl col_function initial_qr columns where @@ -155,14 +156,14 @@ qr matrix = ifoldl (f col_idx) (q,r) col -- | Process the entries in a column, doing basically the same - -- thing as col_dunction does. It updates the QR factorization, + -- thing as col_function does. It updates the QR factorization, -- maybe, and returns the current one. f col_idx (q,r) idx _ -- ignore the current element | idx <= col_idx = (q,r) -- leave it alone | otherwise = (q*rotator, (transpose rotator)*r) where y = r !!! (idx, col_idx) - rotator :: Mat m m a + rotator :: Mat (S m) (S m) a rotator = givens_rotator col_idx idx (r !!! (col_idx, col_idx)) y @@ -171,6 +172,9 @@ qr matrix = -- iterated QR algorithm (see Golub and Van Loan, \"Matrix -- Computations\"). -- +-- Warning: this may not converge if there are repeated eigenvalues +-- (in magnitude). +-- -- Examples: -- -- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) @@ -198,12 +202,20 @@ eigenvalues :: forall m a. (Arity m, Algebraic.C a, Eq a) => Int -> Mat (S m) (S m) a -> Col (S m) a -eigenvalues iterations matrix = - diagonal (ut_approximation iterations) - where - ut_approximation :: Int -> Mat (S m) (S m) a - ut_approximation 0 = matrix - ut_approximation k = rk*qk where (qk,rk) = qr (ut_approximation (k-1)) +eigenvalues iterations matrix + | iterations < 0 = error "negative iterations requested" + | iterations == 0 = diagonal matrix + | otherwise = + diagonal (ut_approximation (iterations - 1)) + where + ut_approximation :: Int -> Mat (S m) (S m) a + ut_approximation 0 = matrix + ut_approximation k = ut_next + where + ut_prev = ut_approximation (k-1) + (qk,rk) = qr ut_prev + ut_next = rk*qk + -- | Compute the eigenvalues and eigenvectors of a symmetric matrix @@ -214,10 +226,13 @@ eigenvalues iterations matrix = -- references see Goluv and Van Loan, \"Matrix Computations\", or -- \"Calculation of Gauss Quadrature Rules\" by Golub and Welsch. -- +-- Warning: this may not converge if there are repeated eigenvalues +-- (in magnitude). +-- -- Examples: -- -- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) --- >>> import Linear.Matrix ( column', frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( column, frobenius_norm, fromList ) -- >>> import Linear.Matrix ( identity_matrix, vec3d ) -- >>> import Normed ( Normed(..) ) -- @@ -239,11 +254,11 @@ eigenvalues iterations matrix = -- >>> let v1 = (1 / (norm v1') :: Double) *> v1' -- >>> let v2' = vec3d (-4, -2, 5) :: Col3 Double -- >>> let v2 = (1 / (norm v2') :: Double) *> v2' --- >>> frobenius_norm ((column' vecs 0) - v0) < 1e-12 +-- >>> frobenius_norm ((column vecs 0) - v0) < 1e-12 -- True --- >>> frobenius_norm ((column' vecs 1) - v1) < 1e-12 +-- >>> frobenius_norm ((column vecs 1) - v1) < 1e-12 -- True --- >>> frobenius_norm ((column' vecs 2) - v2) < 1e-12 +-- >>> frobenius_norm ((column vecs 2) - v2) < 1e-12 -- True -- eigenvectors_symmetric :: forall m a. (Arity m, Algebraic.C a, Eq a) @@ -268,8 +283,7 @@ eigenvectors_symmetric iterations matrix where (t_prev, p_prev) = tp_pair (k-1) (qk,rk) = qr t_prev - tk = rk*qk pk = p_prev*qk - + tk = rk*qk (values, vectors) = (first diagonal) (tp_pair iterations)