X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FQR.hs;h=043b17256e6af341dbe1fe3a34f18dff649a20a7;hb=2a2db25a6667b2b078390e9ddfadad8c367839ee;hp=79ca5f1a5d394cde0ee1ae469df8f5dba30a5282;hpb=47c0f368bd1d6d1b279ea95e3dbf2ccabb879b75;p=numerical-analysis.git diff --git a/src/Linear/QR.hs b/src/Linear/QR.hs index 79ca5f1..043b172 100644 --- a/src/Linear/QR.hs +++ b/src/Linear/QR.hs @@ -5,23 +5,27 @@ -- module Linear.QR ( eigenvalues, + eigenvectors_symmetric, givens_rotator, qr ) where import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) -import Data.Vector.Fixed ( N1, S, ifoldl ) +import Control.Arrow ( first ) +import Data.Vector.Fixed ( S, ifoldl ) import Data.Vector.Fixed.Cont ( Arity ) import NumericPrelude hiding ( (*) ) import Linear.Matrix ( + Col, Mat(..), (*), (!!!), construct, diagonal, identity_matrix, + symmetric, transpose ) @@ -151,7 +155,7 @@ qr matrix = ifoldl (f col_idx) (q,r) col -- | Process the entries in a column, doing basically the same - -- thing as col_dunction does. It updates the QR factorization, + -- thing as col_function does. It updates the QR factorization, -- maybe, and returns the current one. f col_idx (q,r) idx _ -- ignore the current element | idx <= col_idx = (q,r) -- leave it alone @@ -167,6 +171,9 @@ qr matrix = -- iterated QR algorithm (see Golub and Van Loan, \"Matrix -- Computations\"). -- +-- Warning: this may not converge if there are repeated eigenvalues +-- (in magnitude). +-- -- Examples: -- -- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) @@ -193,11 +200,89 @@ qr matrix = eigenvalues :: forall m a. (Arity m, Algebraic.C a, Eq a) => Int -> Mat (S m) (S m) a - -> Mat (S m) N1 a -eigenvalues iterations matrix = - diagonal (ut_approximation iterations) - where - ut_approximation :: Int -> Mat (S m) (S m) a - ut_approximation 0 = matrix - ut_approximation k = rk*qk where (qk,rk) = qr (ut_approximation (k-1)) + -> Col (S m) a +eigenvalues iterations matrix + | iterations < 0 = error "negative iterations requested" + | iterations == 0 = diagonal matrix + | otherwise = + diagonal (ut_approximation (iterations - 1)) + where + ut_approximation :: Int -> Mat (S m) (S m) a + ut_approximation 0 = matrix + ut_approximation k = ut_next + where + ut_prev = ut_approximation (k-1) + (qk,rk) = qr ut_prev + ut_next = rk*qk + + + +-- | Compute the eigenvalues and eigenvectors of a symmetric matrix +-- using an iterative QR algorithm. This is similar to what we do in +-- 'eigenvalues' except we also return the product of all \"Q\" +-- matrices that we have generated. This turns out to me the matrix +-- of eigenvectors when the original matrix is symmetric. For +-- references see Goluv and Van Loan, \"Matrix Computations\", or +-- \"Calculation of Gauss Quadrature Rules\" by Golub and Welsch. +-- +-- Warning: this may not converge if there are repeated eigenvalues +-- (in magnitude). +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 ) +-- >>> import Linear.Matrix ( column', frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( identity_matrix, vec3d ) +-- >>> import Normed ( Normed(..) ) +-- +-- >>> let m = identity_matrix :: Mat3 Double +-- >>> let (vals, vecs) = eigenvectors_symmetric 100 m +-- >>> let expected_vals = fromList [[1],[1],[1]] :: Col3 Double +-- >>> let expected_vecs = m +-- >>> vals == expected_vals +-- True +-- >>> vecs == expected_vecs +-- True +-- +-- >>> let m = fromList [[3,2,4],[2,0,2],[4,2,3]] :: Mat3 Double +-- >>> let (vals, vecs) = eigenvectors_symmetric 1000 m +-- >>> let expected_vals = fromList [[8],[-1],[-1]] :: Col3 Double +-- >>> let v0' = vec3d (2, 1, 2) :: Col3 Double +-- >>> let v0 = (1 / (norm v0') :: Double) *> v0' +-- >>> let v1' = vec3d (-1, 2, 0) :: Col3 Double +-- >>> let v1 = (1 / (norm v1') :: Double) *> v1' +-- >>> let v2' = vec3d (-4, -2, 5) :: Col3 Double +-- >>> let v2 = (1 / (norm v2') :: Double) *> v2' +-- >>> frobenius_norm ((column' vecs 0) - v0) < 1e-12 +-- True +-- >>> frobenius_norm ((column' vecs 1) - v1) < 1e-12 +-- True +-- >>> frobenius_norm ((column' vecs 2) - v2) < 1e-12 +-- True +-- +eigenvectors_symmetric :: forall m a. (Arity m, Algebraic.C a, Eq a) + => Int + -> Mat (S m) (S m) a + -> (Col (S m) a, Mat (S m) (S m) a) +eigenvectors_symmetric iterations matrix + | iterations < 0 = error "negative iterations requested" + | iterations == 0 = (diagonal matrix, identity_matrix) + | not $ symmetric matrix = error "argument is not symmetric" + | otherwise = + (values, vectors) + where + -- | We think of \"T\" as an approximation to an + -- upper-triangular matrix from which we get our + -- eigenvalues. The matrix \"P\" is the product of all + -- previous \"Q\"s and its columns approximate the + -- eigenvectors. + tp_pair :: Int -> (Mat (S m) (S m) a, Mat (S m) (S m) a) + tp_pair 0 = (matrix, identity_matrix) + tp_pair k = (tk,pk) + where + (t_prev, p_prev) = tp_pair (k-1) + (qk,rk) = qr t_prev + pk = p_prev*qk + tk = rk*qk + (values, vectors) = (first diagonal) (tp_pair iterations)