X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=e8d7180fbc7717ef93ce3eb30ff55332aeef31b5;hb=3274b18a2fb48f26e6582d9dcee11b4067230911;hp=3d4daab3dc1f7be81277238b52253c5df54ae61f;hpb=cd3f0ee19d0894b6ab3b7ecc4e1045d7728e5bcc;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 3d4daab..e8d7180 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -19,14 +19,8 @@ import Data.List (intercalate) import Data.Vector.Fixed ( (!), - N1, - N2, - N3, - N4, - N5, - S, - Z, generate, + mk0, mk1, mk2, mk3, @@ -34,67 +28,101 @@ import Data.Vector.Fixed ( mk5 ) import qualified Data.Vector.Fixed as V ( and, + foldl, fromList, head, ifoldl, + ifoldr, imap, map, - maximum, replicate, reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) -import Linear.Vector ( Vec, delete, element_sum ) +import Linear.Vector ( Vec, delete ) +import Naturals import Normed ( Normed(..) ) -import NumericPrelude hiding ( (*), abs ) +-- We want the "max" that works on Ord, not the one that only works on +-- Bool/Integer from the Lattice class! +import NumericPrelude hiding ( (*), abs, max) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Absolute as Absolute ( C ) import Algebra.Absolute ( abs ) import qualified Algebra.Additive as Additive ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Algebra.Algebraic ( root ) +import qualified Algebra.Field as Field ( C ) import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) -import qualified Prelude as P ( map ) +import qualified Prelude as P ( map, max) -- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) -- Type synonyms for n-by-n matrices. +type Mat0 a = Mat Z Z a type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +type Mat6 a = Mat N6 N6 a +type Mat7 a = Mat N7 N7 a + +-- * Type synonyms for 1-by-n row "vectors". -- | Type synonym for row vectors expressed as 1-by-n matrices. type Row n a = Mat N1 n a --- Type synonyms for 1-by-n row "vectors". type Row1 a = Row N1 a type Row2 a = Row N2 a type Row3 a = Row N3 a type Row4 a = Row N4 a type Row5 a = Row N5 a +-- * Type synonyms for n-by-1 column "vectors". + -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a --- Type synonyms for n-by-1 column "vectors". +type Col0 a = Col Z a type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a - --- We need a big column for Gaussian quadrature. -type N10 = S (S (S (S (S N5)))) +type Col6 a = Col N6 a +type Col7 a = Col N7 a +type Col8 a = Col N8 a +type Col9 a = Col N9 a type Col10 a = Col N10 a +type Col11 a = Col N11 a +type Col12 a = Col N12 a +type Col13 a = Col N13 a +type Col14 a = Col N14 a +type Col15 a = Col N15 a +type Col16 a = Col N16 a +type Col17 a = Col N17 a +type Col18 a = Col N18 a +type Col19 a = Col N19 a +type Col20 a = Col N20 a +type Col21 a = Col N21 a +type Col22 a = Col N22 a +type Col23 a = Col N23 a +type Col24 a = Col N24 a +type Col25 a = Col N25 a +type Col26 a = Col N26 a +type Col27 a = Col N27 a +type Col28 a = Col N28 a +type Col29 a = Col N29 a +type Col30 a = Col N30 a +type Col31 a = Col N31 a +type Col32 a = Col N32 a instance (Eq a) => Eq (Mat m n a) where @@ -110,8 +138,8 @@ instance (Eq a) => Eq (Mat m n a) where -- >>> m1 == m3 -- False -- - (Mat rows1) == (Mat rows2) = - V.and $ V.zipWith comp rows1 rows2 + (Mat rows_one) == (Mat rows_two) = + V.and $ V.zipWith comp rows_one rows_two where -- Compare a row, one column at a time. comp row1 row2 = V.and (V.zipWith (==) row1 row2) @@ -303,7 +331,6 @@ identity_matrix = -- >>> is_upper_triangular r -- True -- --- >>> import Naturals ( N7 ) -- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] -- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] -- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] @@ -326,15 +353,21 @@ identity_matrix = -- >>> frobenius_norm (r - (transpose expected)) < 1e-12 -- True -- -cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) - => (Mat m n a) -> (Mat m n a) -cholesky m = construct r +cholesky :: forall m a. (Algebraic.C a, Arity m) + => (Mat m m a) -> (Mat m m a) +cholesky m = ifoldl2 f zero m where - r :: Int -> Int -> a - r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]]) - | i < j = - (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i) - | otherwise = 0 + f :: Int -> Int -> (Mat m m a) -> a -> (Mat m m a) + f i j cur_R _ = set_idx cur_R (i,j) (r cur_R i j) + + r :: (Mat m m a) -> Int -> Int -> a + r cur_R i j + | i == j = sqrt(m !!! (i,j) - sum [(cur_R !!! (k,i))^2 | k <- [0..i-1]]) + | i < j = (((m !!! (i,j)) + - sum [(cur_R !!! (k,i)) NP.* (cur_R !!! (k,j)) + | k <- [0..i-1]]))/(cur_R !!! (i,i)) + | otherwise = 0 + -- | Returns True if the given matrix is upper-triangular, and False @@ -466,35 +499,50 @@ is_triangular :: (Ord a, is_triangular m = is_upper_triangular m || is_lower_triangular m --- | Return the (i,j)th minor of m. +-- | Delete the @i@th row and @j@th column from the matrix. The name +-- \"preminor\" is made up, but is meant to signify that this is +-- usually used in the computationof a minor. A minor is simply the +-- determinant of a preminor in that case. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int --- >>> minor m 0 0 :: Mat2 Int +-- >>> preminor m 0 0 :: Mat2 Int -- ((5,6),(8,9)) --- >>> minor m 1 1 :: Mat2 Int +-- >>> preminor m 1 1 :: Mat2 Int -- ((1,3),(7,9)) -- -minor :: (m ~ S r, - n ~ S t, - Arity r, - Arity t) - => Mat m n a +preminor :: (Arity m, Arity n) + => Mat (S m) (S n) a -> Int -> Int - -> Mat r t a -minor (Mat rows) i j = m + -> Mat m n a +preminor (Mat rows) i j = m where rows' = delete rows i m = Mat $ V.map ((flip delete) j) rows' +-- | Compute the i,jth minor of a @matrix@. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Double +-- >>> minor m1 1 1 +-- -12.0 +-- +minor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +minor matrix i j = determinant (preminor matrix i j) + class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where - determinant (Mat rows) = (V.head . V.head) rows + determinant = unscalar instance (Ord a, Ring.C a, @@ -516,10 +564,8 @@ instance (Ord a, where m' i j = m !!! (i,j) - det_minor i j = determinant (minor m i j) - determinant_recursive = - sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) + sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (minor m 0 j) | j <- [0..(ncols m)-1] ] @@ -535,28 +581,27 @@ instance (Ord a, -- infixl 7 * (*) :: (Ring.C a, Arity m, Arity n, Arity p) - => Mat m n a - -> Mat n p a - -> Mat m p a + => Mat (S m) (S n) a + -> Mat (S n) (S p) a + -> Mat (S m) (S p) a (*) m1 m2 = construct lambda where - lambda i j = - sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] + lambda i j = (transpose $ row m1 i) `dot` (column m2 j) instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where - (Mat rows1) + (Mat rows2) = - Mat $ V.zipWith (V.zipWith (+)) rows1 rows2 + (Mat rows_one) + (Mat rows_two) = + Mat $ V.zipWith (V.zipWith (+)) rows_one rows_two - (Mat rows1) - (Mat rows2) = - Mat $ V.zipWith (V.zipWith (-)) rows1 rows2 + (Mat rows_one) - (Mat rows_two) = + Mat $ V.zipWith (V.zipWith (-)) rows_one rows_two zero = Mat (V.replicate $ V.replicate (fromInteger 0)) -instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat m n a) where +instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat (S m) (S n) a) where -- The first * is ring multiplication, the second is matrix -- multiplication. m1 * m2 = m1 * m2 @@ -568,11 +613,12 @@ instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows -instance (Algebraic.C a, +instance (Absolute.C a, + Algebraic.C a, ToRational.C a, Arity m) - => Normed (Mat (S m) N1 a) where - -- | Generic p-norms for vectors in R^n that are represented as nx1 + => Normed (Col m a) where + -- | Generic p-norms for vectors in R^m that are represented as m-by-1 -- matrices. -- -- Examples: @@ -583,8 +629,16 @@ instance (Algebraic.C a, -- >>> norm_p 2 v1 -- 5.0 -- + -- >>> let v1 = vec2d (-1,1) :: Col2 Double + -- >>> norm_p 1 v1 :: Double + -- 2.0 + -- + -- >>> let v1 = vec0d :: Col0 Double + -- >>> norm v1 + -- 0.0 + -- norm_p p (Mat rows) = - (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] + (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows @@ -598,7 +652,8 @@ instance (Algebraic.C a, -- 5 -- norm_infty (Mat rows) = - fromRational' $ toRational $ V.maximum $ V.map V.maximum rows + fromRational' $ toRational + $ (V.foldl P.max 0) $ V.map (V.foldl P.max 0) rows -- | Compute the Frobenius norm of a matrix. This essentially treats @@ -615,12 +670,13 @@ instance (Algebraic.C a, -- >>> frobenius_norm m == 3 -- True -- -frobenius_norm :: (Algebraic.C a, Ring.C a) => Mat m n a -> a -frobenius_norm (Mat rows) = - sqrt $ element_sum $ V.map row_sum rows +frobenius_norm :: (Arity m, Arity n, Algebraic.C a, Ring.C a) + => Mat m n a + -> a +frobenius_norm matrix = + sqrt $ element_sum2 $ squares where - -- | Square and add up the entries of a row. - row_sum = element_sum . V.map (^2) + squares = map2 (^2) matrix -- Vector helpers. We want it to be easy to create low-dimension @@ -642,6 +698,9 @@ frobenius_norm (Mat rows) = -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- +vec0d :: Col0 a +vec0d = Mat mk0 + vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) @@ -657,16 +716,22 @@ vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) + -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) -dot :: (RealRing.C a, m ~ S t, Arity t) - => Col m a - -> Col m a +-- Get the scalar value out of a 1x1 matrix. +unscalar :: Mat1 a -> a +unscalar (Mat rows) = V.head $ V.head rows + + +dot :: (Ring.C a, Arity m) + => Col (S m) a + -> Col (S m) a -> a -v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) +v1 `dot` v2 = element_sum2 $ zipwith2 (NP.*) v1 v2 -- | The angle between @v1@ and @v2@ in Euclidean space. @@ -812,10 +877,8 @@ ut_part_strict = transpose . lt_part_strict . transpose -- 15 -- trace :: (Arity m, Ring.C a) => Mat m m a -> a -trace matrix = - let (Mat rows) = diagonal matrix - in - element_sum $ V.map V.head rows +trace = element_sum2 . diagonal + -- | Zip together two matrices. @@ -834,7 +897,7 @@ trace matrix = -- >>> zip2 m1 m2 -- (((1,1),(2,1)),((3,1),(4,1))) -- -zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a) +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n b -> Mat m n (a,b) zip2 m1 m2 = construct lambda where @@ -879,11 +942,11 @@ zip2three m1 m2 m3 = -- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- -zipwith2 :: Arity m - => (a -> a -> b) - -> Col m a - -> Col m a - -> Col m b +zipwith2 :: (Arity m, Arity n) + => (a -> b -> c) + -> Mat m n a + -> Mat m n b + -> Mat m n c zipwith2 f c1 c2 = construct lambda where @@ -906,7 +969,8 @@ map2 f (Mat rows) = -- | Fold over the entire matrix passing the coordinates @i@ and @j@ --- (of the row/column) to the accumulation function. +-- (of the row/column) to the accumulation function. The fold occurs +-- from top-left to bottom-right. -- -- Examples: -- @@ -933,6 +997,48 @@ ifoldl2 f initial (Mat rows) = row_function rowinit idx r = V.ifoldl (g idx) rowinit r +-- | Left fold over the entries of a matrix (top-left to bottom-right). +-- +foldl2 :: forall a b m n. + (b -> a -> b) + -> b + -> Mat m n a + -> b +foldl2 f initial matrix = + -- Use the index fold but ignore the index arguments. + let g _ _ = f in ifoldl2 g initial matrix + + +-- | Fold over the entire matrix passing the coordinates @i@ and @j@ +-- (of the row/column) to the accumulation function. The fold occurs +-- from bottom-right to top-left. +-- +-- The order of the arguments in the supplied function are different +-- from those in V.ifoldr; we keep them similar to ifoldl2. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ifoldr2 (\i j cur _ -> cur + i + j) 0 m +-- 18 +-- +ifoldr2 :: forall a b m n. + (Int -> Int -> b -> a -> b) + -> b + -> Mat m n a + -> b +ifoldr2 f initial (Mat rows) = + V.ifoldr row_function initial rows + where + -- | Swap the order of arguments in @f@ so that it agrees with the + -- @f@ passed to ifoldl2. + g :: Int -> Int -> a -> b -> b + g w x y z = f w x z y + + row_function :: Int -> Vec n a -> b -> b + row_function idx r rowinit = V.ifoldr (g idx) rowinit r + + -- | Map a function over a matrix of any dimensions, passing the -- coordinates @i@ and @j@ to the function @f@. -- @@ -969,3 +1075,94 @@ reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows +-- | Unsafely set the (i,j) element of the given matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> set_idx m (1,1) 17 +-- ((1,2,3),(4,17,6),(7,8,9)) +-- +set_idx :: forall m n a. + (Arity m, Arity n) + => Mat m n a + -> (Int, Int) + -> a + -> Mat m n a +set_idx matrix (i,j) newval = + imap2 updater matrix + where + updater :: Int -> Int -> a -> a + updater k l existing = + if k == i && l == j + then newval + else existing + + +-- | Compute the i,jth cofactor of the given @matrix@. This simply +-- premultiplues the i,jth minor by (-1)^(i+j). +cofactor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +cofactor matrix i j = + (-1)^(toInteger i + toInteger j) NP.* (minor matrix i j) + + +-- | Compute the inverse of a matrix using cofactor expansion +-- (generalized Cramer's rule). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[37,22],[17,54]] :: Mat2 Double +-- >>> let e1 = [54/1624, -22/1624] :: [Double] +-- >>> let e2 = [-17/1624, 37/1624] :: [Double] +-- >>> let expected = fromList [e1, e2] :: Mat2 Double +-- >>> let actual = inverse m1 +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +inverse :: (Arity m, + Determined (Mat (S m) (S m)) a, + Determined (Mat m m) a, + Field.C a) + => Mat (S m) (S m) a + -> Mat (S m) (S m) a +inverse matrix = + (1 / (determinant matrix)) *> (transpose $ construct lambda) + where + lambda i j = cofactor matrix i j + + + +-- | Retrieve the rows of a matrix as a column matrix. If the given +-- matrix is m-by-n, the result would be an m-by-1 column whose +-- entries are 1-by-n row matrices. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> (rows2 m) !!! (0,0) +-- ((1,2)) +-- >>> (rows2 m) !!! (1,0) +-- ((3,4)) +-- +rows2 :: (Arity m, Arity n) + => Mat m n a + -> Col m (Row n a) +rows2 (Mat rows) = + Mat $ V.map (mk1. Mat . mk1) rows + + + +-- | Sum the elements of a matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,-1],[3,4]] :: Mat2 Int +-- >>> element_sum2 m +-- 7 +-- +element_sum2 :: (Arity m, Arity n, Additive.C a) => Mat m n a -> a +element_sum2 = foldl2 (+) zero