X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=e8d7180fbc7717ef93ce3eb30ff55332aeef31b5;hb=3274b18a2fb48f26e6582d9dcee11b4067230911;hp=2422eefcb7e269de1e5104ddb1c559b4c5c73e34;hpb=7638f1a379035c045185e25cacf0ea2d9d257265;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 2422eef..e8d7180 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -20,6 +20,7 @@ import Data.List (intercalate) import Data.Vector.Fixed ( (!), generate, + mk0, mk1, mk2, mk3, @@ -27,23 +28,25 @@ import Data.Vector.Fixed ( mk5 ) import qualified Data.Vector.Fixed as V ( and, + foldl, fromList, head, ifoldl, ifoldr, imap, map, - maximum, replicate, reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) -import Linear.Vector ( Vec, delete, element_sum ) -import Naturals ( N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, S, Z ) +import Linear.Vector ( Vec, delete ) +import Naturals import Normed ( Normed(..) ) -import NumericPrelude hiding ( (*), abs ) +-- We want the "max" that works on Ord, not the one that only works on +-- Bool/Integer from the Lattice class! +import NumericPrelude hiding ( (*), abs, max) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Absolute as Absolute ( C ) import Algebra.Absolute ( abs ) @@ -56,17 +59,20 @@ import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) -import qualified Prelude as P ( map ) +import qualified Prelude as P ( map, max) -- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) -- Type synonyms for n-by-n matrices. +type Mat0 a = Mat Z Z a type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +type Mat6 a = Mat N6 N6 a +type Mat7 a = Mat N7 N7 a -- * Type synonyms for 1-by-n row "vectors". @@ -84,6 +90,7 @@ type Row5 a = Row N5 a -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a +type Col0 a = Col Z a type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a @@ -93,7 +100,29 @@ type Col6 a = Col N6 a type Col7 a = Col N7 a type Col8 a = Col N8 a type Col9 a = Col N9 a -type Col10 a = Col N10 a -- We need a big column for Gaussian quadrature. +type Col10 a = Col N10 a +type Col11 a = Col N11 a +type Col12 a = Col N12 a +type Col13 a = Col N13 a +type Col14 a = Col N14 a +type Col15 a = Col N15 a +type Col16 a = Col N16 a +type Col17 a = Col N17 a +type Col18 a = Col N18 a +type Col19 a = Col N19 a +type Col20 a = Col N20 a +type Col21 a = Col N21 a +type Col22 a = Col N22 a +type Col23 a = Col N23 a +type Col24 a = Col N24 a +type Col25 a = Col N25 a +type Col26 a = Col N26 a +type Col27 a = Col N27 a +type Col28 a = Col N28 a +type Col29 a = Col N29 a +type Col30 a = Col N30 a +type Col31 a = Col N31 a +type Col32 a = Col N32 a instance (Eq a) => Eq (Mat m n a) where @@ -109,8 +138,8 @@ instance (Eq a) => Eq (Mat m n a) where -- >>> m1 == m3 -- False -- - (Mat rows1) == (Mat rows2) = - V.and $ V.zipWith comp rows1 rows2 + (Mat rows_one) == (Mat rows_two) = + V.and $ V.zipWith comp rows_one rows_two where -- Compare a row, one column at a time. comp row1 row2 = V.and (V.zipWith (==) row1 row2) @@ -324,15 +353,21 @@ identity_matrix = -- >>> frobenius_norm (r - (transpose expected)) < 1e-12 -- True -- -cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) - => (Mat m n a) -> (Mat m n a) -cholesky m = construct r +cholesky :: forall m a. (Algebraic.C a, Arity m) + => (Mat m m a) -> (Mat m m a) +cholesky m = ifoldl2 f zero m where - r :: Int -> Int -> a - r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]]) - | i < j = - (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i) - | otherwise = 0 + f :: Int -> Int -> (Mat m m a) -> a -> (Mat m m a) + f i j cur_R _ = set_idx cur_R (i,j) (r cur_R i j) + + r :: (Mat m m a) -> Int -> Int -> a + r cur_R i j + | i == j = sqrt(m !!! (i,j) - sum [(cur_R !!! (k,i))^2 | k <- [0..i-1]]) + | i < j = (((m !!! (i,j)) + - sum [(cur_R !!! (k,i)) NP.* (cur_R !!! (k,j)) + | k <- [0..i-1]]))/(cur_R !!! (i,i)) + | otherwise = 0 + -- | Returns True if the given matrix is upper-triangular, and False @@ -546,28 +581,27 @@ instance (Ord a, -- infixl 7 * (*) :: (Ring.C a, Arity m, Arity n, Arity p) - => Mat m n a - -> Mat n p a - -> Mat m p a + => Mat (S m) (S n) a + -> Mat (S n) (S p) a + -> Mat (S m) (S p) a (*) m1 m2 = construct lambda where - lambda i j = - sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] + lambda i j = (transpose $ row m1 i) `dot` (column m2 j) instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where - (Mat rows1) + (Mat rows2) = - Mat $ V.zipWith (V.zipWith (+)) rows1 rows2 + (Mat rows_one) + (Mat rows_two) = + Mat $ V.zipWith (V.zipWith (+)) rows_one rows_two - (Mat rows1) - (Mat rows2) = - Mat $ V.zipWith (V.zipWith (-)) rows1 rows2 + (Mat rows_one) - (Mat rows_two) = + Mat $ V.zipWith (V.zipWith (-)) rows_one rows_two zero = Mat (V.replicate $ V.replicate (fromInteger 0)) -instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat m n a) where +instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat (S m) (S n) a) where -- The first * is ring multiplication, the second is matrix -- multiplication. m1 * m2 = m1 * m2 @@ -579,11 +613,12 @@ instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows -instance (Algebraic.C a, +instance (Absolute.C a, + Algebraic.C a, ToRational.C a, Arity m) - => Normed (Mat (S m) N1 a) where - -- | Generic p-norms for vectors in R^n that are represented as nx1 + => Normed (Col m a) where + -- | Generic p-norms for vectors in R^m that are represented as m-by-1 -- matrices. -- -- Examples: @@ -594,8 +629,16 @@ instance (Algebraic.C a, -- >>> norm_p 2 v1 -- 5.0 -- + -- >>> let v1 = vec2d (-1,1) :: Col2 Double + -- >>> norm_p 1 v1 :: Double + -- 2.0 + -- + -- >>> let v1 = vec0d :: Col0 Double + -- >>> norm v1 + -- 0.0 + -- norm_p p (Mat rows) = - (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] + (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows @@ -609,7 +652,8 @@ instance (Algebraic.C a, -- 5 -- norm_infty (Mat rows) = - fromRational' $ toRational $ V.maximum $ V.map V.maximum rows + fromRational' $ toRational + $ (V.foldl P.max 0) $ V.map (V.foldl P.max 0) rows -- | Compute the Frobenius norm of a matrix. This essentially treats @@ -626,12 +670,13 @@ instance (Algebraic.C a, -- >>> frobenius_norm m == 3 -- True -- -frobenius_norm :: (Algebraic.C a, Ring.C a) => Mat m n a -> a -frobenius_norm (Mat rows) = - sqrt $ element_sum $ V.map row_sum rows +frobenius_norm :: (Arity m, Arity n, Algebraic.C a, Ring.C a) + => Mat m n a + -> a +frobenius_norm matrix = + sqrt $ element_sum2 $ squares where - -- | Square and add up the entries of a row. - row_sum = element_sum . V.map (^2) + squares = map2 (^2) matrix -- Vector helpers. We want it to be easy to create low-dimension @@ -653,6 +698,9 @@ frobenius_norm (Mat rows) = -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- +vec0d :: Col0 a +vec0d = Mat mk0 + vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) @@ -683,7 +731,7 @@ dot :: (Ring.C a, Arity m) => Col (S m) a -> Col (S m) a -> a -v1 `dot` v2 = unscalar $ ((transpose v1) * v2) +v1 `dot` v2 = element_sum2 $ zipwith2 (NP.*) v1 v2 -- | The angle between @v1@ and @v2@ in Euclidean space. @@ -829,10 +877,8 @@ ut_part_strict = transpose . lt_part_strict . transpose -- 15 -- trace :: (Arity m, Ring.C a) => Mat m m a -> a -trace matrix = - let (Mat rows) = diagonal matrix - in - element_sum $ V.map V.head rows +trace = element_sum2 . diagonal + -- | Zip together two matrices. @@ -851,7 +897,7 @@ trace matrix = -- >>> zip2 m1 m2 -- (((1,1),(2,1)),((3,1),(4,1))) -- -zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a) +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n b -> Mat m n (a,b) zip2 m1 m2 = construct lambda where @@ -896,11 +942,11 @@ zip2three m1 m2 m3 = -- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- -zipwith2 :: Arity m - => (a -> a -> b) - -> Col m a - -> Col m a - -> Col m b +zipwith2 :: (Arity m, Arity n) + => (a -> b -> c) + -> Mat m n a + -> Mat m n b + -> Mat m n c zipwith2 f c1 c2 = construct lambda where @@ -951,6 +997,18 @@ ifoldl2 f initial (Mat rows) = row_function rowinit idx r = V.ifoldl (g idx) rowinit r +-- | Left fold over the entries of a matrix (top-left to bottom-right). +-- +foldl2 :: forall a b m n. + (b -> a -> b) + -> b + -> Mat m n a + -> b +foldl2 f initial matrix = + -- Use the index fold but ignore the index arguments. + let g _ _ = f in ifoldl2 g initial matrix + + -- | Fold over the entire matrix passing the coordinates @i@ and @j@ -- (of the row/column) to the accumulation function. The fold occurs -- from bottom-right to top-left. @@ -1076,3 +1134,35 @@ inverse matrix = where lambda i j = cofactor matrix i j + + +-- | Retrieve the rows of a matrix as a column matrix. If the given +-- matrix is m-by-n, the result would be an m-by-1 column whose +-- entries are 1-by-n row matrices. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> (rows2 m) !!! (0,0) +-- ((1,2)) +-- >>> (rows2 m) !!! (1,0) +-- ((3,4)) +-- +rows2 :: (Arity m, Arity n) + => Mat m n a + -> Col m (Row n a) +rows2 (Mat rows) = + Mat $ V.map (mk1. Mat . mk1) rows + + + +-- | Sum the elements of a matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,-1],[3,4]] :: Mat2 Int +-- >>> element_sum2 m +-- 7 +-- +element_sum2 :: (Arity m, Arity n, Additive.C a) => Mat m n a -> a +element_sum2 = foldl2 (+) zero