X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=dbd321fefc6e076ade9344495ddfd1c6bd26858c;hb=c22f72ffaa4edec587b28a7c22aa07330349fd73;hp=39576dc41343c2bbad77b745a33bc720d44f666f;hpb=303c5e7bba583f08e59bc6c848be8e75c1155a3b;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 39576dc..dbd321f 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -6,22 +6,34 @@ {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE RebindableSyntax #-} +-- | Boxed matrices; that is, boxed m-vectors of boxed n-vectors. We +-- assume that the underlying representation is +-- Data.Vector.Fixed.Boxed.Vec for simplicity. It was tried in +-- generality and failed. +-- module Linear.Matrix where import Data.List (intercalate) import Data.Vector.Fixed ( - Dim, - Vector + N1, + N2, + N3, + N4, + N5, + S, + Z, + mk1, + mk2, + mk3, + mk4, + mk5 ) import qualified Data.Vector.Fixed as V ( - Fun(..), - N1, and, - eq, - foldl, fromList, + head, length, map, maximum, @@ -29,33 +41,31 @@ import qualified Data.Vector.Fixed as V ( toList, zipWith ) -import Data.Vector.Fixed.Internal (Arity, arity, S, Dim) +import Data.Vector.Fixed.Boxed (Vec) +import Data.Vector.Fixed.Internal (Arity, arity) import Linear.Vector import Normed -import NumericPrelude hiding (abs) +import NumericPrelude hiding ((*), abs) +import qualified NumericPrelude as NP ((*)) import qualified Algebra.Algebraic as Algebraic -import qualified Algebra.Absolute as Absolute +import Algebra.Algebraic (root) import qualified Algebra.Additive as Additive import qualified Algebra.Ring as Ring -import Algebra.Absolute (abs) -import qualified Algebra.Field as Field -import qualified Algebra.RealField as RealField +import qualified Algebra.Module as Module import qualified Algebra.RealRing as RealRing import qualified Algebra.ToRational as ToRational import qualified Algebra.Transcendental as Transcendental import qualified Prelude as P -data Mat v w a = (Vector v (w a), Vector w a) => Mat (v (w a)) -type Mat1 a = Mat D1 D1 a -type Mat2 a = Mat D2 D2 a -type Mat3 a = Mat D3 D3 a -type Mat4 a = Mat D4 D4 a +data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) +type Mat1 a = Mat N1 N1 a +type Mat2 a = Mat N2 N2 a +type Mat3 a = Mat N3 N3 a +type Mat4 a = Mat N4 N4 a +type Mat5 a = Mat N5 N5 a --- We can't just declare that all instances of Vector are instances of --- Eq unfortunately. We wind up with an overlapping instance for --- w (w a). -instance (Eq a, Vector v Bool, Vector w Bool) => Eq (Mat v w a) where +instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- -- Examples: @@ -75,7 +85,7 @@ instance (Eq a, Vector v Bool, Vector w Bool) => Eq (Mat v w a) where comp row1 row2 = V.and (V.zipWith (==) row1 row2) -instance (Show a, Vector v String, Vector w String) => Show (Mat v w a) where +instance (Show a) => Show (Mat m n a) where -- | Display matrices and vectors as ordinary tuples. This is poor -- practice, but these results are primarily displayed -- interactively and convenience trumps correctness (said the guy @@ -99,22 +109,21 @@ instance (Show a, Vector v String, Vector w String) => Show (Mat v w a) where element_strings = P.map show v1l - -- | Convert a matrix to a nested list. -toList :: Mat v w a -> [[a]] +toList :: Mat m n a -> [[a]] toList (Mat rows) = map V.toList (V.toList rows) -- | Create a matrix from a nested list. -fromList :: (Vector v (w a), Vector w a, Vector v a) => [[a]] -> Mat v w a +fromList :: (Arity m, Arity n) => [[a]] -> Mat m n a fromList vs = Mat (V.fromList $ map V.fromList vs) -- | Unsafe indexing. -(!!!) :: (Vector w a) => Mat v w a -> (Int, Int) -> a +(!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a (!!!) m (i, j) = (row m i) ! j -- | Safe indexing. -(!!?) :: Mat v w a -> (Int, Int) -> Maybe a +(!!?) :: Mat m n a -> (Int, Int) -> Maybe a (!!?) m@(Mat rows) (i, j) | i < 0 || j < 0 = Nothing | i > V.length rows = Nothing @@ -124,27 +133,30 @@ fromList vs = Mat (V.fromList $ map V.fromList vs) -- | The number of rows in the matrix. -nrows :: Mat v w a -> Int -nrows (Mat rows) = V.length rows +nrows :: forall m n a. (Arity m) => Mat m n a -> Int +nrows _ = arity (undefined :: m) -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. -ncols :: forall v w a. (Vector w a) => Mat v w a -> Int -ncols _ = (arity (undefined :: Dim w)) +ncols :: forall m n a. (Arity n) => Mat m n a -> Int +ncols _ = arity (undefined :: n) + -- | Return the @i@th row of @m@. Unsafe. -row :: Mat v w a -> Int -> w a +row :: Mat m n a -> Int -> (Vec n a) row (Mat rows) i = rows ! i -- | Return the @j@th column of @m@. Unsafe. -column :: (Vector v a) => Mat v w a -> Int -> v a +column :: Mat m n a -> Int -> (Vec m a) column (Mat rows) j = V.map (element j) rows where element = flip (!) + + -- | Transpose @m@; switch it's columns and its rows. This is a dirty -- implementation.. it would be a little cleaner to use imap, but it -- doesn't seem to work. @@ -157,11 +169,7 @@ column (Mat rows) j = -- >>> transpose m -- ((1,3),(2,4)) -- -transpose :: (Vector w (v a), - Vector v a, - Vector w a) - => Mat v w a - -> Mat w v a +transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a transpose m = Mat $ V.fromList column_list where column_list = [ column m i | i <- [0..(ncols m)-1] ] @@ -179,13 +187,7 @@ transpose m = Mat $ V.fromList column_list -- >>> symmetric m2 -- False -- -symmetric :: (Vector v (w a), - Vector w a, - v ~ w, - Vector w Bool, - Eq a) - => Mat v w a - -> Bool +symmetric :: (Eq a, Arity m) => Mat m m a -> Bool symmetric m = m == (transpose m) @@ -203,19 +205,17 @@ symmetric m = -- >>> construct lambda :: Mat3 Int -- ((0,1,2),(1,2,3),(2,3,4)) -- -construct :: forall v w a. - (Vector v (w a), - Vector w a) - => (Int -> Int -> a) - -> Mat v w a +construct :: forall m n a. (Arity m, Arity n) + => (Int -> Int -> a) -> Mat m n a construct lambda = Mat rows where -- The arity trick is used in Data.Vector.Fixed.length. - imax = (arity (undefined :: Dim v)) - 1 - jmax = (arity (undefined :: Dim w)) - 1 + imax = (arity (undefined :: m)) - 1 + jmax = (arity (undefined :: n)) - 1 row' i = V.fromList [ lambda i j | j <- [0..jmax] ] rows = V.fromList [ row' i | i <- [0..imax] ] + -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all -- values on the diagonal of @r@ positive. @@ -225,54 +225,173 @@ construct lambda = Mat rows -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double -- >>> cholesky m1 -- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) --- >>> (transpose (cholesky m1)) `mult` (cholesky m1) +-- >>> (transpose (cholesky m1)) * (cholesky m1) -- ((20.000000000000004,-1.0),(-1.0,20.0)) -- -cholesky :: forall a v w. - (Algebraic.C a, - Vector v (w a), - Vector w a, - Vector v a) - => (Mat v w a) - -> (Mat v w a) +cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) + => (Mat m n a) -> (Mat m n a) cholesky m = construct r where r :: Int -> Int -> a r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]]) | i < j = - (((m !!! (i,j)) - sum [(r k i)*(r k j) | k <- [0..i-1]]))/(r i i) + (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i) | otherwise = 0 --- | Matrix multiplication. Our 'Num' instance doesn't define one, and --- we need additional restrictions on the result type anyway. +-- | Returns True if the given matrix is upper-triangular, and False +-- otherwise. -- -- Examples: -- --- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat Vec2D Vec3D Int --- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat Vec3D Vec2D Int --- >>> m1 `mult` m2 +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_upper_triangular m +-- False +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_upper_triangular m +-- True +-- +is_upper_triangular :: (Eq a, Ring.C a, Arity m, Arity n) + => Mat m n a -> Bool +is_upper_triangular m = + and $ concat results + where + results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] + + test :: Int -> Int -> Bool + test i j + | i <= j = True + | otherwise = m !!! (i,j) == 0 + + +-- | Returns True if the given matrix is lower-triangular, and False +-- otherwise. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_lower_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_lower_triangular m +-- False +-- +is_lower_triangular :: (Eq a, + Ring.C a, + Arity m, + Arity n) + => Mat m n a + -> Bool +is_lower_triangular = is_upper_triangular . transpose + + +-- | Returns True if the given matrix is triangular, and False +-- otherwise. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> is_triangular m +-- False +-- +is_triangular :: (Eq a, + Ring.C a, + Arity m, + Arity n) + => Mat m n a + -> Bool +is_triangular m = is_upper_triangular m || is_lower_triangular m + + +-- | Return the (i,j)th minor of m. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> minor m 0 0 :: Mat2 Int +-- ((5,6),(8,9)) +-- >>> minor m 1 1 :: Mat2 Int +-- ((1,3),(7,9)) +-- +minor :: (m ~ S r, + n ~ S t, + Arity r, + Arity t) + => Mat m n a + -> Int + -> Int + -> Mat r t a +minor (Mat rows) i j = m + where + rows' = delete rows i + m = Mat $ V.map ((flip delete) j) rows' + + +class (Eq a, Ring.C a) => Determined p a where + determinant :: (p a) -> a + +instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where + determinant (Mat rows) = (V.head . V.head) rows + +instance (Eq a, + Ring.C a, + Arity n, + Determined (Mat (S n) (S n)) a) + => Determined (Mat (S (S n)) (S (S n))) a where + -- | The recursive definition with a special-case for triangular matrices. + -- + -- Examples: + -- + -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int + -- >>> determinant m + -- -1 + -- + determinant m + | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ] + | otherwise = determinant_recursive + where + m' i j = m !!! (i,j) + + det_minor i j = determinant (minor m i j) + + determinant_recursive = + sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) + | j <- [0..(ncols m)-1] ] + + + +-- | Matrix multiplication. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat N2 N3 Int +-- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat N3 N2 Int +-- >>> m1 * m2 -- ((22,28),(49,64)) -- -mult :: (Ring.C a, - Vector v a, - Vector w a, - Vector z a, - Vector v (z a)) - => Mat v w a - -> Mat w z a - -> Mat v z a -mult m1 m2 = construct lambda +infixl 7 * +(*) :: (Ring.C a, Arity m, Arity n, Arity p) + => Mat m n a + -> Mat n p a + -> Mat m p a +(*) m1 m2 = construct lambda where lambda i j = - sum [(m1 !!! (i,k)) * (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] + sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] -instance (Ring.C a, - Vector v (w a), - Vector w a) - => Additive.C (Mat v w a) where +instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where (Mat rows1) + (Mat rows2) = Mat $ V.zipWith (V.zipWith (+)) rows1 rows2 @@ -283,87 +402,121 @@ instance (Ring.C a, zero = Mat (V.replicate $ V.replicate (fromInteger 0)) -instance (Ring.C a, - Vector v (w a), - Vector w a, - v ~ w) - => Ring.C (Mat v w a) where - one = Mat (V.replicate $ V.replicate (fromInteger 1)) - m1 * m2 = m1 `mult` m2 +instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat m n a) where + -- The first * is ring multiplication, the second is matrix + -- multiplication. + m1 * m2 = m1 * m2 + + +instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where + -- We can multiply a matrix by a scalar of the same type as its + -- elements. + x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows instance (Algebraic.C a, ToRational.C a, - Vector v (w a), - Vector w a, - Vector v a, - Vector v [a]) - => Normed (Mat v w a) where - -- Treat the matrix as a big vector. - norm_p p (Mat rows) = - sqrt $ sum [(fromRational' $ toRational x)^2 | x <- xs] - where - xs = concat $ V.toList $ V.map V.toList rows + Arity m, + Arity n) + => Normed (Mat (S m) (S n) a) where + -- | Generic p-norms. The usual norm in R^n is (norm_p 2). We treat + -- all matrices as big vectors. + -- + -- Examples: + -- + -- >>> let v1 = vec2d (3,4) + -- >>> norm_p 1 v1 + -- 7.0 + -- >>> norm_p 2 v1 + -- 5.0 + -- + norm_p p (Mat rows) = + (root p') $ sum [(fromRational' $ toRational x)^p' | x <- xs] + where + p' = toInteger p + xs = concat $ V.toList $ V.map V.toList rows - norm_infty m@(Mat rows) - | nrows m == 0 || ncols m == 0 = 0 - | otherwise = - fromRational' $ toRational $ - P.maximum $ V.toList $ V.map (P.maximum . V.toList) rows + -- | The infinity norm. + -- + -- Examples: + -- + -- >>> let v1 = vec3d (1,5,2) + -- >>> norm_infty v1 + -- 5 + -- + norm_infty (Mat rows) = + fromRational' $ toRational $ V.maximum $ V.map V.maximum rows -- Vector helpers. We want it to be easy to create low-dimension --- column vectors. -type Vec a b = Mat a D1 b - -vec2d :: (a,a) -> Mat D2 D1 a -vec2d (x,y) = Mat (D2 (D1 x) (D1 y)) - -vec3d :: (a,a,a) -> Mat D3 D1 a -vec3d (x,y,z) = Mat (D3 (D1 x) (D1 y) (D1 z)) - -vec4d :: (a,a,a,a) -> Mat D4 D1 a -vec4d (w,x,y,z) = Mat (D4 (D1 w) (D1 x) (D1 y) (D1 z)) - -dot :: (RealRing.C a, - Dim w ~ V.N1, - Vector v a, - Vector w a, - Vector w (v a), - Vector w (w a)) - => Mat v w a - -> Mat v w a +-- column vectors, which are nx1 matrices. + +-- | Convenient constructor for 2D vectors. +-- +-- Examples: +-- +-- >>> import Roots.Simple +-- >>> let fst m = m !!! (0,0) +-- >>> let snd m = m !!! (1,0) +-- >>> let h = 0.5 :: Double +-- >>> let g1 m = 1.0 + h NP.* exp(-((fst m)^2))/(1.0 + (snd m)^2) +-- >>> let g2 m = 0.5 + h NP.* atan((fst m)^2 + (snd m)^2) +-- >>> let g u = vec2d ((g1 u), (g2 u)) +-- >>> let u0 = vec2d (1.0, 1.0) +-- >>> let eps = 1/(10^9) +-- >>> fixed_point g eps u0 +-- ((1.0728549599342185),(1.0820591495686167)) +-- +vec1d :: (a) -> Mat N1 N1 a +vec1d (x) = Mat (mk1 (mk1 x)) + +vec2d :: (a,a) -> Mat N2 N1 a +vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y)) + +vec3d :: (a,a,a) -> Mat N3 N1 a +vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z)) + +vec4d :: (a,a,a,a) -> Mat N4 N1 a +vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) + +vec5d :: (a,a,a,a,a) -> Mat N5 N1 a +vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) + +-- Since we commandeered multiplication, we need to create 1x1 +-- matrices in order to multiply things. +scalar :: a -> Mat N1 N1 a +scalar x = Mat (mk1 (mk1 x)) + +dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) + => Mat m n a + -> Mat m n a -> a -v1 `dot` v2 = ((transpose v1) `mult` v2) !!! (0, 0) +v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) -- | The angle between @v1@ and @v2@ in Euclidean space. -- -- Examples: -- --- >>> let v1 = make2d (1.0, 0.0) --- >>> let v2 = make2d (0.0, 1.0) +-- >>> let v1 = vec2d (1.0, 0.0) +-- >>> let v2 = vec2d (0.0, 1.0) -- >>> angle v1 v2 == pi/2.0 -- True -- angle :: (Transcendental.C a, RealRing.C a, - Dim w ~ V.N1, - Vector w (w a), - Vector v [a], - Vector v a, - Vector w a, - Vector v (w a), - Vector w (v a), + n ~ N1, + m ~ S t, + Arity t, ToRational.C a) - => Mat v w a - -> Mat v w a + => Mat m n a + -> Mat m n a -> a angle v1 v2 = acos theta where - theta = (recip norms) * (v1 `dot` v2) - norms = (norm v1) * (norm v2) + theta = (recip norms) NP.* (v1 `dot` v2) + norms = (norm v1) NP.* (norm v2)