X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=a5fbb8403b0832becf04b0d48a68be4f0725345c;hb=9ef91ad4ec3a5c0966f0850d40310722b6c38b68;hp=34920b4f025e7e2027588ab07c14d6772b679ab2;hpb=4e464a486bef07db44de9c3d3fae0c8094401b09;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 34920b4..a5fbb84 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -37,6 +37,7 @@ import qualified Data.Vector.Fixed as V ( and, fromList, head, + ifoldl, length, map, maximum, @@ -91,6 +92,11 @@ type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a +-- We need a big column for Gaussian quadrature. +type N10 = S (S (S (S (S N5)))) +type Col10 a = Col N10 a + + instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- @@ -146,60 +152,47 @@ fromList vs = Mat (V.fromList $ map V.fromList vs) -- | Unsafe indexing. (!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a -(!!!) m (i, j) = (row m i) ! j +(!!!) (Mat rows) (i, j) = (rows ! i) ! j + -- | Safe indexing. -(!!?) :: Mat m n a -> (Int, Int) -> Maybe a -(!!?) m@(Mat rows) (i, j) +(!!?) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> Maybe a +(!!?) matrix (i, j) | i < 0 || j < 0 = Nothing - | i > V.length rows = Nothing - | otherwise = if j > V.length (row m j) - then Nothing - else Just $ (row m j) ! j + | i > (nrows matrix) - 1 = Nothing + | j > (ncols matrix) - 1 = Nothing + | otherwise = Just $ matrix !!! (i,j) -- | The number of rows in the matrix. nrows :: forall m n a. (Arity m) => Mat m n a -> Int nrows _ = arity (undefined :: m) + -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. ncols :: forall m n a. (Arity n) => Mat m n a -> Int ncols _ = arity (undefined :: n) --- | Return the @i@th row of @m@. Unsafe. -row :: Mat m n a -> Int -> (Vec n a) -row (Mat rows) i = rows ! i - - -- | Return the @i@th row of @m@ as a matrix. Unsafe. -row' :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a -row' m i = +row :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a +row m i = construct lambda where lambda _ j = m !!! (i, j) --- | Return the @j@th column of @m@. Unsafe. -column :: Mat m n a -> Int -> (Vec m a) -column (Mat rows) j = - V.map (element j) rows - where - element = flip (!) - - -- | Return the @j@th column of @m@ as a matrix. Unsafe. -column' :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a -column' m j = +column :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a +column m j = construct lambda where lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty --- implementation.. it would be a little cleaner to use imap, but it --- doesn't seem to work. +-- implementation, but I don't see a better way. -- -- TODO: Don't cheat with fromList. -- @@ -210,9 +203,10 @@ column' m j = -- ((1,3),(2,4)) -- transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a -transpose m = Mat $ V.fromList column_list +transpose matrix = + construct lambda where - column_list = [ column m i | i <- [0..(ncols m)-1] ] + lambda i j = matrix !!! (j,i) -- | Is @m@ symmetric? @@ -264,6 +258,7 @@ identity_matrix :: (Arity m, Ring.C a) => Mat m m a identity_matrix = construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0)) + -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all -- values on the diagonal of @r@ positive. @@ -767,3 +762,84 @@ trace matrix = let (Mat rows) = diagonal matrix in element_sum $ V.map V.head rows + + +-- | Zip together two column matrices. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int +-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int +-- >>> colzip m1 m2 +-- (((1,1)),((1,2)),((1,3))) +-- +colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) +colzip c1 c2 = + construct lambda + where + lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) + + +-- | Zip together two column matrices using the supplied function. +-- +-- Examples: +-- +-- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer +-- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer +-- >>> colzipwith (^) c1 c2 +-- ((1),(32),(729)) +-- +colzipwith :: Arity m + => (a -> a -> b) + -> Col m a + -> Col m a + -> Col m b +colzipwith f c1 c2 = + construct lambda + where + lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) + + +-- | Map a function over a matrix of any dimensions. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> map2 (^2) m +-- ((1,4),(9,16)) +-- +map2 :: (a -> b) -> Mat m n a -> Mat m n b +map2 f (Mat rows) = + Mat $ V.map g rows + where + g = V.map f + + +-- | Fold over the entire matrix passing the coordinates @i@ and @j@ +-- (of the row/column) to the accumulation function. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m +-- 18 +-- +ifoldl2 :: forall a b m n. + (Int -> Int -> b -> a -> b) + -> b + -> Mat m n a + -> b +ifoldl2 f initial (Mat rows) = + V.ifoldl row_function initial rows + where + -- | The order that we need this in (so that @g idx@ makes sense) + -- is a little funny. So that we don't need to pass weird + -- functions into ifoldl2, we swap the second and third + -- arguments of @f@ calling the result @g@. + g :: Int -> b -> Int -> a -> b + g w x y = f w y x + + row_function :: b -> Int -> Vec n a -> b + row_function rowinit idx r = V.ifoldl (g idx) rowinit r + +