X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=5bb5519664c5fa4028d284775493bb7da4f5598e;hb=221805e711475880d37fb7bb6d7a0b04689b1ebe;hp=63c0348cd9e6e0ce676ce5c17c1629890836a6e6;hpb=3c5015c938c96f70b15c6292198a01390ee6540a;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 63c0348..5bb5519 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -1,78 +1,141 @@ -{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} +{-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} +{-# LANGUAGE RebindableSyntax #-} module Linear.Matrix where +import Data.List (intercalate) + import Data.Vector.Fixed ( Dim, + N1, Vector ) import qualified Data.Vector.Fixed as V ( + and, fromList, length, map, - toList + replicate, + toList, + zipWith ) -import Data.Vector.Fixed.Internal (arity) - +import Data.Vector.Fixed.Internal (Arity, arity, S) import Linear.Vector +import Normed + +import NumericPrelude hiding ((*), abs) +import qualified NumericPrelude as NP ((*)) +import qualified Algebra.Algebraic as Algebraic +import Algebra.Algebraic (root) +import qualified Algebra.Additive as Additive +import qualified Algebra.Ring as Ring +import qualified Algebra.Module as Module +import qualified Algebra.RealRing as RealRing +import qualified Algebra.ToRational as ToRational +import qualified Algebra.Transcendental as Transcendental +import qualified Prelude as P + +data Mat v w a = (Vector v (w a), Vector w a) => Mat (v (w a)) +type Mat1 a = Mat D1 D1 a +type Mat2 a = Mat D2 D2 a +type Mat3 a = Mat D3 D3 a +type Mat4 a = Mat D4 D4 a + +-- We can't just declare that all instances of Vector are instances of +-- Eq unfortunately. We wind up with an overlapping instance for +-- w (w a). +instance (Eq a, Vector v Bool, Vector w Bool) => Eq (Mat v w a) where + -- | Compare a row at a time. + -- + -- Examples: + -- + -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int + -- >>> let m2 = fromList [[1,2],[3,4]] :: Mat2 Int + -- >>> let m3 = fromList [[5,6],[7,8]] :: Mat2 Int + -- >>> m1 == m2 + -- True + -- >>> m1 == m3 + -- False + -- + (Mat rows1) == (Mat rows2) = + V.and $ V.zipWith comp rows1 rows2 + where + -- Compare a row, one column at a time. + comp row1 row2 = V.and (V.zipWith (==) row1 row2) + + +instance (Show a, Vector v String, Vector w String) => Show (Mat v w a) where + -- | Display matrices and vectors as ordinary tuples. This is poor + -- practice, but these results are primarily displayed + -- interactively and convenience trumps correctness (said the guy + -- who insists his vector lengths be statically checked at + -- compile-time). + -- + -- Examples: + -- + -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int + -- >>> show m + -- ((1,2),(3,4)) + -- + show (Mat rows) = + "(" ++ (intercalate "," (V.toList row_strings)) ++ ")" + where + row_strings = V.map show_vector rows + show_vector v1 = + "(" ++ (intercalate "," element_strings) ++ ")" + where + v1l = V.toList v1 + element_strings = P.map show v1l + -type Mat v w a = Vn v (Vn w a) -type Mat2 a = Mat Vec2D Vec2D a -type Mat3 a = Mat Vec3D Vec3D a -type Mat4 a = Mat Vec4D Vec4D a -- | Convert a matrix to a nested list. -toList :: (Vector v (Vn w a), Vector w a) => Mat v w a -> [[a]] -toList m = map V.toList (V.toList m) +toList :: Mat v w a -> [[a]] +toList (Mat rows) = map V.toList (V.toList rows) -- | Create a matrix from a nested list. -fromList :: (Vector v (Vn w a), Vector w a) => [[a]] -> Mat v w a -fromList vs = V.fromList $ map V.fromList vs +fromList :: (Vector v (w a), Vector w a, Vector v a) => [[a]] -> Mat v w a +fromList vs = Mat (V.fromList $ map V.fromList vs) -- | Unsafe indexing. -(!!!) :: (Vector v (Vn w a), Vector w a) => Mat v w a -> (Int, Int) -> a +(!!!) :: (Vector w a) => Mat v w a -> (Int, Int) -> a (!!!) m (i, j) = (row m i) ! j -- | Safe indexing. -(!!?) :: (Vector v (Vn w a), Vector w a) => Mat v w a - -> (Int, Int) - -> Maybe a -(!!?) m (i, j) +(!!?) :: Mat v w a -> (Int, Int) -> Maybe a +(!!?) m@(Mat rows) (i, j) | i < 0 || j < 0 = Nothing - | i > V.length m = Nothing + | i > V.length rows = Nothing | otherwise = if j > V.length (row m j) then Nothing else Just $ (row m j) ! j -- | The number of rows in the matrix. -nrows :: forall v w a. (Vector v (Vn w a), Vector w a) => Mat v w a -> Int -nrows = V.length +nrows :: Mat v w a -> Int +nrows (Mat rows) = V.length rows -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. -ncols :: forall v w a. (Vector v (Vn w a), Vector w a) => Mat v w a -> Int -ncols _ = arity (undefined :: Dim w) +ncols :: forall v w a. (Vector w a) => Mat v w a -> Int +ncols _ = (arity (undefined :: Dim w)) -- | Return the @i@th row of @m@. Unsafe. -row :: (Vector v (Vn w a), Vector w a) => Mat v w a - -> Int - -> Vn w a -row m i = m ! i +row :: Mat v w a -> Int -> w a +row (Mat rows) i = rows ! i -- | Return the @j@th column of @m@. Unsafe. -column :: (Vector v a, Vector v (Vn w a), Vector w a) => Mat v w a - -> Int - -> Vn v a -column m j = - V.map (element j) m +column :: (Vector v a) => Mat v w a -> Int -> v a +column (Mat rows) j = + V.map (element j) rows where element = flip (!) @@ -89,16 +152,16 @@ column m j = -- >>> transpose m -- ((1,3),(2,4)) -- -transpose :: (Vector v (Vn w a), - Vector w (Vn v a), +transpose :: (Vector w (v a), Vector v a, Vector w a) => Mat v w a -> Mat w v a -transpose m = V.fromList column_list +transpose m = Mat $ V.fromList column_list where column_list = [ column m i | i <- [0..(ncols m)-1] ] + -- | Is @m@ symmetric? -- -- Examples: @@ -111,7 +174,7 @@ transpose m = V.fromList column_list -- >>> symmetric m2 -- False -- -symmetric :: (Vector v (Vn w a), +symmetric :: (Vector v (w a), Vector w a, v ~ w, Vector w Bool, @@ -136,11 +199,11 @@ symmetric m = -- ((0,1,2),(1,2,3),(2,3,4)) -- construct :: forall v w a. - (Vector v (Vn w a), + (Vector v (w a), Vector w a) => (Int -> Int -> a) -> Mat v w a -construct lambda = rows +construct lambda = Mat rows where -- The arity trick is used in Data.Vector.Fixed.length. imax = (arity (undefined :: Dim v)) - 1 @@ -157,43 +220,333 @@ construct lambda = rows -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double -- >>> cholesky m1 -- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) --- >>> (transpose (cholesky m1)) `mult` (cholesky m1) +-- >>> (transpose (cholesky m1)) * (cholesky m1) -- ((20.000000000000004,-1.0),(-1.0,20.0)) -- cholesky :: forall a v w. - (RealFloat a, - Vector v (Vn w a), - Vector w a) + (Algebraic.C a, + Vector v (w a), + Vector w a, + Vector v a) => (Mat v w a) -> (Mat v w a) cholesky m = construct r where r :: Int -> Int -> a - r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)**2 | k <- [0..i-1]]) + r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]]) | i < j = - (((m !!! (i,j)) - sum [(r k i)*(r k j) | k <- [0..i-1]]))/(r i i) + (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i) | otherwise = 0 + +-- | Returns True if the given matrix is upper-triangular, and False +-- otherwise. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_upper_triangular m +-- False +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_upper_triangular m +-- True +-- +is_upper_triangular :: (Eq a, Ring.C a, Vector w a) => Mat v w a -> Bool +is_upper_triangular m = + and $ concat results + where + results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] + + test :: Int -> Int -> Bool + test i j + | i <= j = True + | otherwise = m !!! (i,j) == 0 + + +-- | Returns True if the given matrix is lower-triangular, and False +-- otherwise. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_lower_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_lower_triangular m +-- False +-- +is_lower_triangular :: (Eq a, + Ring.C a, + Vector w a, + Vector w (v a), + Vector v a) + => Mat v w a + -> Bool +is_lower_triangular = is_upper_triangular . transpose + + +-- | Returns True if the given matrix is triangular, and False +-- otherwise. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_triangular m +-- True +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> is_triangular m +-- False +-- +is_triangular :: (Eq a, + Ring.C a, + Vector w a, + Vector w (v a), + Vector v a) + => Mat v w a + -> Bool +is_triangular m = is_upper_triangular m || is_lower_triangular m + + +-- | Return the (i,j)th minor of m. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> minor m 0 0 :: Mat2 Int +-- ((5,6),(8,9)) +-- >>> minor m 1 1 :: Mat2 Int +-- ((1,3),(7,9)) +-- +minor :: (Dim v ~ S (Dim u), + Dim w ~ S (Dim z), + Vector z a, + Vector u (w a), + Vector u (z a)) + => Mat v w a + -> Int + -> Int + -> Mat u z a +minor (Mat rows) i j = m + where + rows' = delete rows i + m = Mat $ V.map ((flip delete) j) rows' + + +determinant :: (Eq a, + Ring.C a, + Vector w a, + Vector w (v a), + Vector v a, + Dim v ~ S r, + Dim w ~ S t) + => Mat v w a + -> a +determinant m + | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ] + | otherwise = undefined --determinant_recursive m + +{- +determinant_recursive :: forall v w a r c. + (Eq a, + Ring.C a, + Vector w a) + => Mat (v r) (w c) a + -> a +determinant_recursive m + | (ncols m) == 0 || (nrows m) == 0 = error "don't do that" + | (ncols m) == 1 && (nrows m) == 1 = m !!! (0,0) -- Base case + | otherwise = + sum [ (-1)^(1+(toInteger j)) NP.* (m' 1 j) NP.* (det_minor 1 j) + | j <- [0..(ncols m)-1] ] + where + m' i j = m !!! (i,j) + + det_minor :: Int -> Int -> a + det_minor i j = determinant (minor m i j) +-} + -- | Matrix multiplication. Our 'Num' instance doesn't define one, and -- we need additional restrictions on the result type anyway. -- -- Examples: -- --- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat Vec2D Vec3D Int --- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat Vec3D Vec2D Int --- >>> m1 `mult` m2 +-- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat D2 D3 Int +-- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat D3 D2 Int +-- >>> m1 * m2 -- ((22,28),(49,64)) -- -mult :: (Num a, - Vector v (Vn w a), +infixl 7 * +(*) :: (Ring.C a, + Vector v a, Vector w a, - Vector w (Vn z a), Vector z a, - Vector v (Vn z a)) + Vector v (z a)) => Mat v w a -> Mat w z a -> Mat v z a -mult m1 m2 = construct lambda +(*) m1 m2 = construct lambda where lambda i j = - sum [(m1 !!! (i,k)) * (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] + sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] + + + +instance (Ring.C a, + Vector v (w a), + Vector w a) + => Additive.C (Mat v w a) where + + (Mat rows1) + (Mat rows2) = + Mat $ V.zipWith (V.zipWith (+)) rows1 rows2 + + (Mat rows1) - (Mat rows2) = + Mat $ V.zipWith (V.zipWith (-)) rows1 rows2 + + zero = Mat (V.replicate $ V.replicate (fromInteger 0)) + + +instance (Ring.C a, + Vector v (w a), + Vector w a, + v ~ w) + => Ring.C (Mat v w a) where + -- The first * is ring multiplication, the second is matrix + -- multiplication. + m1 * m2 = m1 * m2 + + +instance (Ring.C a, + Vector v (w a), + Vector w a) + => Module.C a (Mat v w a) where + -- We can multiply a matrix by a scalar of the same type as its + -- elements. + x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows + + +instance (Algebraic.C a, + ToRational.C a, + Vector v (w a), + Vector w a, + Vector v a, + Vector v [a]) + => Normed (Mat v w a) where + -- | Generic p-norms. The usual norm in R^n is (norm_p 2). We treat + -- all matrices as big vectors. + -- + -- Examples: + -- + -- >>> let v1 = vec2d (3,4) + -- >>> norm_p 1 v1 + -- 7.0 + -- >>> norm_p 2 v1 + -- 5.0 + -- + norm_p p (Mat rows) = + (root p') $ sum [(fromRational' $ toRational x)^p' | x <- xs] + where + p' = toInteger p + xs = concat $ V.toList $ V.map V.toList rows + + -- | The infinity norm. We don't use V.maximum here because it + -- relies on a type constraint that the vector be non-empty and I + -- don't know how to pattern match it away. + -- + -- Examples: + -- + -- >>> let v1 = vec3d (1,5,2) + -- >>> norm_infty v1 + -- 5 + -- + norm_infty m@(Mat rows) + | nrows m == 0 || ncols m == 0 = 0 + | otherwise = + fromRational' $ toRational $ + P.maximum $ V.toList $ V.map (P.maximum . V.toList) rows + + + + + +-- Vector helpers. We want it to be easy to create low-dimension +-- column vectors, which are nx1 matrices. + +-- | Convenient constructor for 2D vectors. +-- +-- Examples: +-- +-- >>> import Roots.Simple +-- >>> let h = 0.5 :: Double +-- >>> let g1 (Mat (D2 (D1 x) (D1 y))) = 1.0 + h NP.* exp(-(x^2))/(1.0 + y^2) +-- >>> let g2 (Mat (D2 (D1 x) (D1 y))) = 0.5 + h NP.* atan(x^2 + y^2) +-- >>> let g u = vec2d ((g1 u), (g2 u)) +-- >>> let u0 = vec2d (1.0, 1.0) +-- >>> let eps = 1/(10^9) +-- >>> fixed_point g eps u0 +-- ((1.0728549599342185),(1.0820591495686167)) +-- +vec1d :: (a) -> Mat D1 D1 a +vec1d (x) = Mat (D1 (D1 x)) + +vec2d :: (a,a) -> Mat D2 D1 a +vec2d (x,y) = Mat (D2 (D1 x) (D1 y)) + +vec3d :: (a,a,a) -> Mat D3 D1 a +vec3d (x,y,z) = Mat (D3 (D1 x) (D1 y) (D1 z)) + +vec4d :: (a,a,a,a) -> Mat D4 D1 a +vec4d (w,x,y,z) = Mat (D4 (D1 w) (D1 x) (D1 y) (D1 z)) + +-- Since we commandeered multiplication, we need to create 1x1 +-- matrices in order to multiply things. +scalar :: a -> Mat D1 D1 a +scalar x = Mat (D1 (D1 x)) + +dot :: (RealRing.C a, + Dim w ~ N1, + Dim v ~ S n, + Vector v a, + Vector w a, + Vector w (v a), + Vector w (w a)) + => Mat v w a + -> Mat v w a + -> a +v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) + + +-- | The angle between @v1@ and @v2@ in Euclidean space. +-- +-- Examples: +-- +-- >>> let v1 = vec2d (1.0, 0.0) +-- >>> let v2 = vec2d (0.0, 1.0) +-- >>> angle v1 v2 == pi/2.0 +-- True +-- +angle :: (Transcendental.C a, + RealRing.C a, + Dim w ~ N1, + Dim v ~ S n, + Vector w (w a), + Vector v [a], + Vector v a, + Vector w a, + Vector v (w a), + Vector w (v a), + ToRational.C a) + => Mat v w a + -> Mat v w a + -> a +angle v1 v2 = + acos theta + where + theta = (recip norms) NP.* (v1 `dot` v2) + norms = (norm v1) NP.* (norm v2)