X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=4d1dceb417c07e63992ec7afefd981a23d484c39;hb=3c226d5d5ceb0781b10d86dcb958846f1cc9b075;hp=dd89a9ff3f091490c3d1587b2839c338ec495468;hpb=4b7a8137a75e9fe186d1eb8976f7a47e82afc12b;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index dd89a9f..4d1dceb 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -31,16 +31,17 @@ import Data.Vector.Fixed ( mk2, mk3, mk4, - mk5 - ) + mk5 ) import qualified Data.Vector.Fixed as V ( and, fromList, head, - length, + ifoldl, + imap, map, maximum, replicate, + reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) @@ -144,67 +145,85 @@ instance (Show a) => Show (Mat m n a) where toList :: Mat m n a -> [[a]] toList (Mat rows) = map V.toList (V.toList rows) + -- | Create a matrix from a nested list. fromList :: (Arity m, Arity n) => [[a]] -> Mat m n a fromList vs = Mat (V.fromList $ map V.fromList vs) --- | Unsafe indexing. +-- | Unsafe indexing. Much faster than the safe indexing. (!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a -(!!!) m (i, j) = (row m i) ! j +(!!!) (Mat rows) (i, j) = (rows ! i) ! j + -- | Safe indexing. -(!!?) :: Mat m n a -> (Int, Int) -> Maybe a -(!!?) m@(Mat rows) (i, j) - | i < 0 || j < 0 = Nothing - | i > V.length rows = Nothing - | otherwise = if j > V.length (row m j) - then Nothing - else Just $ (row m j) ! j +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> m !!? (-1,-1) +-- Nothing +-- >>> m !!? (-1,0) +-- Nothing +-- >>> m !!? (-1,1) +-- Nothing +-- >>> m !!? (0,-1) +-- Nothing +-- >>> m !!? (0,0) +-- Just 1 +-- >>> m !!? (0,1) +-- Just 2 +-- >>> m !!? (1,-1) +-- Nothing +-- >>> m !!? (1,0) +-- Just 3 +-- >>> m !!? (1,1) +-- Just 4 +-- >>> m !!? (2,-1) +-- Nothing +-- >>> m !!? (2,0) +-- Nothing +-- >>> m !!? (2,1) +-- Nothing +-- >>> m !!? (2,2) +-- Nothing +-- +(!!?) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> Maybe a +(!!?) matrix idx = + ifoldl2 f Nothing matrix + where + f k l found cur = if (k,l) == idx then (Just cur) else found -- | The number of rows in the matrix. nrows :: forall m n a. (Arity m) => Mat m n a -> Int nrows _ = arity (undefined :: m) + -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. ncols :: forall m n a. (Arity n) => Mat m n a -> Int ncols _ = arity (undefined :: n) --- | Return the @i@th row of @m@. Unsafe. -row :: Mat m n a -> Int -> (Vec n a) -row (Mat rows) i = rows ! i - - -- | Return the @i@th row of @m@ as a matrix. Unsafe. -row' :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a -row' m i = +row :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a +row m i = construct lambda where lambda _ j = m !!! (i, j) --- | Return the @j@th column of @m@. Unsafe. -column :: Mat m n a -> Int -> (Vec m a) -column (Mat rows) j = - V.map (element j) rows - where - element = flip (!) - - -- | Return the @j@th column of @m@ as a matrix. Unsafe. -column' :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a -column' m j = +column :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a +column m j = construct lambda where lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty --- implementation.. it would be a little cleaner to use imap, but it --- doesn't seem to work. +-- implementation, but I don't see a better way. -- -- TODO: Don't cheat with fromList. -- @@ -215,9 +234,10 @@ column' m j = -- ((1,3),(2,4)) -- transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a -transpose m = Mat $ V.fromList column_list +transpose matrix = + construct lambda where - column_list = [ column m i | i <- [0..(ncols m)-1] ] + lambda i j = matrix !!! (j,i) -- | Is @m@ symmetric? @@ -269,6 +289,7 @@ identity_matrix :: (Arity m, Ring.C a) => Mat m m a identity_matrix = construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0)) + -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all -- values on the diagonal of @r@ positive. @@ -276,10 +297,34 @@ identity_matrix = -- Examples: -- -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double --- >>> cholesky m1 --- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) --- >>> (transpose (cholesky m1)) * (cholesky m1) --- ((20.000000000000004,-1.0),(-1.0,20.0)) +-- >>> let r = cholesky m1 +-- >>> frobenius_norm ((transpose r)*r - m1) < 1e-10 +-- True +-- >>> is_upper_triangular r +-- True +-- +-- >>> import Naturals ( N7 ) +-- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] +-- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] +-- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] +-- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] +-- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] +-- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] +-- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] +-- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double +-- +-- >>> let e1 = [2.449489742783178,0,0,0,0,0,0] :: [Double] +-- >>> let e2 = [-1.224744871391589,3,0,0,0,0,0] :: [Double] +-- >>> let e3 = [0,-5/2,5/2,0,0,0,0] :: [Double] +-- >>> let e4 = [0,0,0,2.449489742783178,0,0,0] :: [Double] +-- >>> let e5 = [0,0,0,0,2.449489742783178,0,0] :: [Double] +-- >>> let e6 = [0,0,0,0,0,2.449489742783178,0] :: [Double] +-- >>> let e7 = [0,0,0,0,0,0,3.872983346207417] :: [Double] +-- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Mat N7 N7 Double +-- +-- >>> let r = cholesky big_K +-- >>> frobenius_norm (r - (transpose expected)) < 1e-12 +-- True -- cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) => (Mat m n a) -> (Mat m n a) @@ -304,29 +349,26 @@ cholesky m = construct r -- >>> is_upper_triangular' 1e-10 m -- True -- --- TODO: --- --- 1. Don't cheat with lists. --- -is_upper_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular' :: forall m n a. + (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool -is_upper_triangular' epsilon m = - and $ concat results +is_upper_triangular' epsilon matrix = + ifoldl2 f True matrix where - results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] - - test :: Int -> Int -> Bool - test i j + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x | i <= j = True -- use "less than or equal to" so zero is a valid epsilon - | otherwise = abs (m !!! (i,j)) <= epsilon + | otherwise = abs x <= epsilon -- | Returns True if the given matrix is upper-triangular, and False --- otherwise. A specialized version of 'is_upper_triangular\'' with --- @epsilon = 0@. +-- otherwise. We don't delegate to the general +-- 'is_upper_triangular'' here because it imposes additional +-- typeclass constraints throughout the library. -- -- Examples: -- @@ -338,18 +380,22 @@ is_upper_triangular' epsilon m = -- >>> is_upper_triangular m -- True -- --- TODO: --- --- 1. The Ord constraint is too strong here, Eq would suffice. --- -is_upper_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular :: forall m n a. + (Eq a, Ring.C a, Arity m, Arity n) => Mat m n a -> Bool -is_upper_triangular = is_upper_triangular' 0 +is_upper_triangular matrix = + ifoldl2 f True matrix + where + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x + | i <= j = True + | otherwise = x == 0 + -- | Returns True if the given matrix is lower-triangular, and False --- otherwise. This is a specialized version of 'is_lower_triangular\'' --- with @epsilon = 0@. +-- otherwise. -- -- Examples: -- @@ -361,9 +407,8 @@ is_upper_triangular = is_upper_triangular' 0 -- >>> is_lower_triangular m -- False -- -is_lower_triangular :: (Ord a, +is_lower_triangular :: (Eq a, Ring.C a, - Absolute.C a, Arity m, Arity n) => Mat m n a @@ -617,11 +662,16 @@ vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) -dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) - => Mat m n a - -> Mat m n a +-- Get the scalar value out of a 1x1 matrix. +unscalar :: Mat1 a -> a +unscalar (Mat rows) = V.head $ V.head rows + + +dot :: (Ring.C a, Arity m) + => Col (S m) a + -> Col (S m) a -> a -v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) +v1 `dot` v2 = unscalar $ ((transpose v1) * v2) -- | The angle between @v1@ and @v2@ in Euclidean space. @@ -635,12 +685,11 @@ v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) -- angle :: (Transcendental.C a, RealRing.C a, - n ~ N1, m ~ S t, Arity t, ToRational.C a) - => Mat m n a - -> Mat m n a + => Col m a + -> Col m a -> a angle v1 v2 = acos theta @@ -774,37 +823,73 @@ trace matrix = element_sum $ V.map V.head rows --- | Zip together two column matrices. +-- | Zip together two matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int --- >>> colzip m1 m2 +-- >>> zip2 m1 m2 -- (((1,1)),((1,2)),((1,3))) -- -colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) -colzip c1 c2 = +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> zip2 m1 m2 +-- (((1,1),(2,1)),((3,1),(4,1))) +-- +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a) +zip2 m1 m2 = construct lambda where - lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) + lambda i j = (m1 !!! (i,j), m2 !!! (i,j)) --- | Zip together two column matrices using the supplied function. +-- | Zip together three matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int +-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int +-- >>> let m3 = fromList [[4],[5],[6]] :: Col3 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,4)),((1,2,5)),((1,3,6))) +-- +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> let m3 = fromList [[8,2],[6,3]] :: Mat2 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,8),(2,1,2)),((3,1,6),(4,1,3))) +-- +zip2three :: (Arity m, Arity n) + => Mat m n a + -> Mat m n a + -> Mat m n a + -> Mat m n (a,a,a) +zip2three m1 m2 m3 = + construct lambda + where + lambda i j = (m1 !!! (i,j), m2 !!! (i,j), m3 !!! (i,j)) + + +-- | Zip together two matrices using the supplied function. -- -- Examples: -- -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer --- >>> colzipwith (^) c1 c2 +-- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- -colzipwith :: Arity m +zipwith2 :: Arity m => (a -> a -> b) -> Col m a -> Col m a -> Col m b -colzipwith f c1 c2 = +zipwith2 f c1 c2 = construct lambda where lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) @@ -815,11 +900,99 @@ colzipwith f c1 c2 = -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int --- >>> matmap (^2) m +-- >>> map2 (^2) m -- ((1,4),(9,16)) -- -matmap :: (a -> b) -> Mat m n a -> Mat m n b -matmap f (Mat rows) = +map2 :: (a -> b) -> Mat m n a -> Mat m n b +map2 f (Mat rows) = Mat $ V.map g rows where g = V.map f + + +-- | Fold over the entire matrix passing the coordinates @i@ and @j@ +-- (of the row/column) to the accumulation function. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m +-- 18 +-- +ifoldl2 :: forall a b m n. + (Int -> Int -> b -> a -> b) + -> b + -> Mat m n a + -> b +ifoldl2 f initial (Mat rows) = + V.ifoldl row_function initial rows + where + -- | The order that we need this in (so that @g idx@ makes sense) + -- is a little funny. So that we don't need to pass weird + -- functions into ifoldl2, we swap the second and third + -- arguments of @f@ calling the result @g@. + g :: Int -> b -> Int -> a -> b + g w x y = f w y x + + row_function :: b -> Int -> Vec n a -> b + row_function rowinit idx r = V.ifoldl (g idx) rowinit r + + +-- | Map a function over a matrix of any dimensions, passing the +-- coordinates @i@ and @j@ to the function @f@. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> imap2 (\i j _ -> i+j) m +-- ((0,1),(1,2)) +-- +imap2 :: (Int -> Int -> a -> b) -> Mat m n a -> Mat m n b +imap2 f (Mat rows) = + Mat $ V.imap g rows + where + g i = V.imap (f i) + + +-- | Reverse the order of elements in a matrix. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3]] :: Row3 Int +-- >>> reverse2 m1 +-- ((3,2,1)) +-- +-- >>> let m1 = vec3d (1,2,3 :: Int) +-- >>> reverse2 m1 +-- ((3),(2),(1)) +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> reverse2 m +-- ((9,8,7),(6,5,4),(3,2,1)) +-- +reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a +reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows + + +-- | Unsafely set the (i,j) element of the given matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> set_idx m (1,1) 17 +-- ((1,2,3),(4,17,6),(7,8,9)) +-- +set_idx :: forall m n a. + (Arity m, Arity n) + => Mat m n a + -> (Int, Int) + -> a + -> Mat m n a +set_idx matrix (i,j) newval = + imap2 updater matrix + where + updater :: Int -> Int -> a -> a + updater k l existing = + if k == i && l == j + then newval + else existing