X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=3d4daab3dc1f7be81277238b52253c5df54ae61f;hb=cd3f0ee19d0894b6ab3b7ecc4e1045d7728e5bcc;hp=cfa838042ee7bf0794e7a5275981f7ab16ffd7fb;hpb=9fa2506d30661e984ff74313c3884007067387cb;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index cfa8380..3d4daab 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -31,8 +31,7 @@ import Data.Vector.Fixed ( mk2, mk3, mk4, - mk5 - ) + mk5 ) import qualified Data.Vector.Fixed as V ( and, fromList, @@ -42,6 +41,7 @@ import qualified Data.Vector.Fixed as V ( map, maximum, replicate, + reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) @@ -297,10 +297,34 @@ identity_matrix = -- Examples: -- -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double --- >>> cholesky m1 --- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) --- >>> (transpose (cholesky m1)) * (cholesky m1) --- ((20.000000000000004,-1.0),(-1.0,20.0)) +-- >>> let r = cholesky m1 +-- >>> frobenius_norm ((transpose r)*r - m1) < 1e-10 +-- True +-- >>> is_upper_triangular r +-- True +-- +-- >>> import Naturals ( N7 ) +-- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] +-- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] +-- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] +-- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] +-- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] +-- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] +-- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] +-- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double +-- +-- >>> let e1 = [2.449489742783178,0,0,0,0,0,0] :: [Double] +-- >>> let e2 = [-1.224744871391589,3,0,0,0,0,0] :: [Double] +-- >>> let e3 = [0,-5/2,5/2,0,0,0,0] :: [Double] +-- >>> let e4 = [0,0,0,2.449489742783178,0,0,0] :: [Double] +-- >>> let e5 = [0,0,0,0,2.449489742783178,0,0] :: [Double] +-- >>> let e6 = [0,0,0,0,0,2.449489742783178,0] :: [Double] +-- >>> let e7 = [0,0,0,0,0,0,3.872983346207417] :: [Double] +-- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Mat N7 N7 Double +-- +-- >>> let r = cholesky big_K +-- >>> frobenius_norm (r - (transpose expected)) < 1e-12 +-- True -- cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) => (Mat m n a) -> (Mat m n a) @@ -325,29 +349,26 @@ cholesky m = construct r -- >>> is_upper_triangular' 1e-10 m -- True -- --- TODO: --- --- 1. Don't cheat with lists. --- -is_upper_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular' :: forall m n a. + (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool -is_upper_triangular' epsilon m = - and $ concat results +is_upper_triangular' epsilon matrix = + ifoldl2 f True matrix where - results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] - - test :: Int -> Int -> Bool - test i j + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x | i <= j = True -- use "less than or equal to" so zero is a valid epsilon - | otherwise = abs (m !!! (i,j)) <= epsilon + | otherwise = abs x <= epsilon -- | Returns True if the given matrix is upper-triangular, and False --- otherwise. A specialized version of 'is_upper_triangular\'' with --- @epsilon = 0@. +-- otherwise. We don't delegate to the general +-- 'is_upper_triangular'' here because it imposes additional +-- typeclass constraints throughout the library. -- -- Examples: -- @@ -359,18 +380,22 @@ is_upper_triangular' epsilon m = -- >>> is_upper_triangular m -- True -- --- TODO: --- --- 1. The Ord constraint is too strong here, Eq would suffice. --- -is_upper_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular :: forall m n a. + (Eq a, Ring.C a, Arity m, Arity n) => Mat m n a -> Bool -is_upper_triangular = is_upper_triangular' 0 +is_upper_triangular matrix = + ifoldl2 f True matrix + where + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x + | i <= j = True + | otherwise = x == 0 + -- | Returns True if the given matrix is lower-triangular, and False --- otherwise. This is a specialized version of 'is_lower_triangular\'' --- with @epsilon = 0@. +-- otherwise. -- -- Examples: -- @@ -382,9 +407,8 @@ is_upper_triangular = is_upper_triangular' 0 -- >>> is_lower_triangular m -- False -- -is_lower_triangular :: (Ord a, +is_lower_triangular :: (Eq a, Ring.C a, - Absolute.C a, Arity m, Arity n) => Mat m n a @@ -638,9 +662,9 @@ vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) -dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) - => Mat m n a - -> Mat m n a +dot :: (RealRing.C a, m ~ S t, Arity t) + => Col m a + -> Col m a -> a v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) @@ -656,12 +680,11 @@ v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) -- angle :: (Transcendental.C a, RealRing.C a, - n ~ N1, m ~ S t, Arity t, ToRational.C a) - => Mat m n a - -> Mat m n a + => Col m a + -> Col m a -> a angle v1 v2 = acos theta @@ -795,37 +818,73 @@ trace matrix = element_sum $ V.map V.head rows --- | Zip together two column matrices. +-- | Zip together two matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int --- >>> colzip m1 m2 +-- >>> zip2 m1 m2 -- (((1,1)),((1,2)),((1,3))) -- -colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) -colzip c1 c2 = +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> zip2 m1 m2 +-- (((1,1),(2,1)),((3,1),(4,1))) +-- +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a) +zip2 m1 m2 = construct lambda where - lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) + lambda i j = (m1 !!! (i,j), m2 !!! (i,j)) --- | Zip together two column matrices using the supplied function. +-- | Zip together three matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int +-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int +-- >>> let m3 = fromList [[4],[5],[6]] :: Col3 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,4)),((1,2,5)),((1,3,6))) +-- +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> let m3 = fromList [[8,2],[6,3]] :: Mat2 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,8),(2,1,2)),((3,1,6),(4,1,3))) +-- +zip2three :: (Arity m, Arity n) + => Mat m n a + -> Mat m n a + -> Mat m n a + -> Mat m n (a,a,a) +zip2three m1 m2 m3 = + construct lambda + where + lambda i j = (m1 !!! (i,j), m2 !!! (i,j), m3 !!! (i,j)) + + +-- | Zip together two matrices using the supplied function. -- -- Examples: -- -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer --- >>> colzipwith (^) c1 c2 +-- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- -colzipwith :: Arity m +zipwith2 :: Arity m => (a -> a -> b) -> Col m a -> Col m a -> Col m b -colzipwith f c1 c2 = +zipwith2 f c1 c2 = construct lambda where lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) @@ -852,7 +911,7 @@ map2 f (Mat rows) = -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int --- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m +-- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m -- 18 -- ifoldl2 :: forall a b m n. @@ -888,3 +947,25 @@ imap2 f (Mat rows) = Mat $ V.imap g rows where g i = V.imap (f i) + + +-- | Reverse the order of elements in a matrix. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3]] :: Row3 Int +-- >>> reverse2 m1 +-- ((3,2,1)) +-- +-- >>> let m1 = vec3d (1,2,3 :: Int) +-- >>> reverse2 m1 +-- ((3),(2),(1)) +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> reverse2 m +-- ((9,8,7),(6,5,4),(3,2,1)) +-- +reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a +reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows + +