X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=054bb6e3afac2777ef16e200ff64b9c60a9fd3fd;hb=b64e8d2a0ef24e880265b9ba4997c3d4eb995570;hp=5562e92b7ef6101a754fbcc505eb2bf6bc22c37f;hpb=c7b6b27f4304416dcec67519b710d090850c3caa;p=numerical-analysis.git diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 5562e92..054bb6e 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -37,6 +37,7 @@ import qualified Data.Vector.Fixed as V ( and, fromList, head, + ifoldl, length, map, maximum, @@ -61,13 +62,41 @@ import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) import qualified Prelude as P ( map ) +-- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) + +-- Type synonyms for n-by-n matrices. type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +-- | Type synonym for row vectors expressed as 1-by-n matrices. +type Row n a = Mat N1 n a + +-- Type synonyms for 1-by-n row "vectors". +type Row1 a = Row N1 a +type Row2 a = Row N2 a +type Row3 a = Row N3 a +type Row4 a = Row N4 a +type Row5 a = Row N5 a + +-- | Type synonym for column vectors expressed as n-by-1 matrices. +type Col n a = Mat n N1 a + +-- Type synonyms for n-by-1 column "vectors". +type Col1 a = Col N1 a +type Col2 a = Col N2 a +type Col3 a = Col N3 a +type Col4 a = Col N4 a +type Col5 a = Col N5 a + +-- We need a big column for Gaussian quadrature. +type N10 = S (S (S (S (S N5)))) +type Col10 a = Col N10 a + + instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- @@ -150,6 +179,14 @@ row :: Mat m n a -> Int -> (Vec n a) row (Mat rows) i = rows ! i +-- | Return the @i@th row of @m@ as a matrix. Unsafe. +row' :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a +row' m i = + construct lambda + where + lambda _ j = m !!! (i, j) + + -- | Return the @j@th column of @m@. Unsafe. column :: Mat m n a -> Int -> (Vec m a) column (Mat rows) j = @@ -158,6 +195,12 @@ column (Mat rows) j = element = flip (!) +-- | Return the @j@th column of @m@ as a matrix. Unsafe. +column' :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a +column' m j = + construct lambda + where + lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty @@ -555,24 +598,24 @@ frobenius_norm (Mat rows) = -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- -vec1d :: (a) -> Mat N1 N1 a +vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) -vec2d :: (a,a) -> Mat N2 N1 a +vec2d :: (a,a) -> Col2 a vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y)) -vec3d :: (a,a,a) -> Mat N3 N1 a +vec3d :: (a,a,a) -> Col3 a vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z)) -vec4d :: (a,a,a,a) -> Mat N4 N1 a +vec4d :: (a,a,a,a) -> Col4 a vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -vec5d :: (a,a,a,a,a) -> Mat N5 N1 a +vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. -scalar :: a -> Mat N1 N1 a +scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) @@ -618,7 +661,7 @@ angle v1 v2 = -- >>> diagonal m -- ((1),(5),(9)) -- -diagonal :: (Arity m) => Mat m m a -> Mat m N1 a +diagonal :: (Arity m) => Mat m m a -> Col m a diagonal matrix = construct lambda where @@ -730,3 +773,84 @@ trace matrix = let (Mat rows) = diagonal matrix in element_sum $ V.map V.head rows + + +-- | Zip together two column matrices. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int +-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int +-- >>> colzip m1 m2 +-- (((1,1)),((1,2)),((1,3))) +-- +colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) +colzip c1 c2 = + construct lambda + where + lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) + + +-- | Zip together two column matrices using the supplied function. +-- +-- Examples: +-- +-- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer +-- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer +-- >>> colzipwith (^) c1 c2 +-- ((1),(32),(729)) +-- +colzipwith :: Arity m + => (a -> a -> b) + -> Col m a + -> Col m a + -> Col m b +colzipwith f c1 c2 = + construct lambda + where + lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) + + +-- | Map a function over a matrix of any dimensions. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> map2 (^2) m +-- ((1,4),(9,16)) +-- +map2 :: (a -> b) -> Mat m n a -> Mat m n b +map2 f (Mat rows) = + Mat $ V.map g rows + where + g = V.map f + + +-- | Fold over the entire matrix passing the coordinates @i@ and @j@ +-- (of the row/column) to the accumulation function. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m +-- 18 +-- +ifoldl2 :: forall a b m n. + (Int -> Int -> b -> a -> b) + -> b + -> Mat m n a + -> b +ifoldl2 f initial (Mat rows) = + V.ifoldl row_function initial rows + where + -- | The order that we need this in (so that @g idx@ makes sense) + -- is a little funny. So that we don't need to pass weird + -- functions into ifoldl2, we swap the second and third + -- arguments of @f@ calling the result @g@. + g :: Int -> b -> Int -> a -> b + g w x y = f w y x + + row_function :: b -> Int -> Vec n a -> b + row_function rowinit idx r = V.ifoldl (g idx) rowinit r + +