X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FGrid.hs;h=8ce2430d186870d7e7322d4bf5ff9e381870273c;hb=ac0e94e82605a5fd1e3ee724cd597f48614689e4;hp=63b2cfa122bc6ba5bbb9d496b77f1a00466eebb6;hpb=46b1f2e3741d6571c2f931371222f8970b6c7f63;p=spline3.git diff --git a/src/Grid.hs b/src/Grid.hs index 63b2cfa..8ce2430 100644 --- a/src/Grid.hs +++ b/src/Grid.hs @@ -8,31 +8,31 @@ import Test.QuickCheck (Arbitrary(..), Gen, Positive(..)) import Cube (Cube(Cube), find_containing_tetrahedra) import FunctionValues -import Misc (flatten) import Point (Point) import Tetrahedron (polynomial) -import ThreeDimensional (contains_point) +import Values (Values3D, dims, empty3d, zoom_shape) +import qualified Data.Array.Repa as R -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one -- another in each direction (x,y,z). data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! - function_values :: [[[Double]]] } + function_values :: Values3D } deriving (Eq, Show) instance Arbitrary Grid where arbitrary = do (Positive h') <- arbitrary :: Gen (Positive Double) - fvs <- arbitrary :: Gen [[[Double]]] + fvs <- arbitrary :: Gen Values3D return (make_grid h' fvs) -- | The constructor that we want people to use. If we're passed a -- non-positive grid size, we throw an error. -make_grid :: Double -> [[[Double]]] -> Grid +make_grid :: Double -> Values3D -> Grid make_grid grid_size values | grid_size <= 0 = error "grid size must be positive" | otherwise = Grid grid_size values @@ -40,24 +40,21 @@ make_grid grid_size values -- | Creates an empty grid with grid size 1. empty_grid :: Grid -empty_grid = Grid 1 [[[]]] +empty_grid = Grid 1 empty3d -- | Returns a three-dimensional list of cubes centered on the grid -- points of g with the appropriate 'FunctionValues'. cubes :: Grid -> [[[Cube]]] cubes g - | fvs == [[[]]] = [[[]]] - | head fvs == [[]] = [[[]]] + | xsize == 0 || ysize == 0 || zsize == 0 = [[[]]] | otherwise = [[[ Cube (h g) i j k (make_values fvs i j k) | i <- [0..xsize]] | j <- [0..ysize]] | k <- [0..zsize]] where fvs = function_values g - zsize = (length fvs) - 1 - ysize = length (head fvs) - 1 - xsize = length (head $ head fvs) - 1 + (xsize, ysize, zsize) = dims fvs -- | Takes a grid and a position as an argument and returns the cube @@ -68,43 +65,72 @@ cube_at g i j k | i < 0 = Nothing | j < 0 = Nothing | k < 0 = Nothing - | i >= length (cubes g) = Nothing - | j >= length ((cubes g) !! i) = Nothing - | k >= length (((cubes g) !! i) !! j) = Nothing - | otherwise = Just $ (((cubes g) !! i) !! j) !! k + | k >= length (cubes g) = Nothing + | j >= length ((cubes g) !! k) = Nothing + | i >= length (((cubes g) !! k) !! j) = Nothing + | otherwise = Just $ (((cubes g) !! k) !! j) !! i + + + +-- The first cube along any axis covers (-h/2, h/2). The second +-- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. +-- +-- We translate the (x,y,z) coordinates forward by 'h/2' so that the +-- first covers (0, h), the second covers (h, 2h), etc. This makes +-- it easy to figure out which cube contains the given point. +calculate_containing_cube_coordinate :: Grid -> Double -> Int +calculate_containing_cube_coordinate g coord + -- Don't use a cube on the boundary if we can help it. This + -- returns cube #1 if we would have returned cube #0 and cube #1 + -- exists. + | coord == offset && (xsize > 0 && ysize > 0 && zsize > 0) = 1 + | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 + where + (xsize, ysize, zsize) = dims (function_values g) + cube_width = (h g) + offset = cube_width / 2 + + +-- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'. +-- Since our grid is rectangular, we can figure this out without having +-- to check every cube. +find_containing_cube :: Grid -> Point -> Cube +find_containing_cube g p = + case cube_at g i j k of + Just c -> c + Nothing -> error "No cube contains the given point." + where + (x, y, z) = p + i = calculate_containing_cube_coordinate g x + j = calculate_containing_cube_coordinate g y + k = calculate_containing_cube_coordinate g z --- | Takes a 'Grid', and returns all 'Cube's belonging to it that --- contain the given 'Point'. -find_containing_cubes :: Grid -> Point -> [Cube] -find_containing_cubes g p = - filter contains_our_point all_cubes - where - all_cubes = flatten $ cubes g - contains_our_point = flip contains_point p +{-# INLINE zoom_lookup #-} +zoom_lookup :: Grid -> a -> (R.DIM3 -> Double) +zoom_lookup g _ = zoom_result g +{-# INLINE zoom_result #-} +zoom_result :: Grid -> R.DIM3 -> Double +zoom_result g (R.Z R.:. i R.:. j R.:. k) = + f p + where + i' = fromIntegral i + j' = fromIntegral j + k' = fromIntegral k + p = (i', j', k') :: Point + c = find_containing_cube g p + t = head (find_containing_tetrahedra c p) + f = polynomial t -zoom :: Grid -> Int -> [[[Double]]] + +zoom :: Grid -> Int -> Values3D zoom g scale_factor - | fvs == [[[]]] = [] - | head fvs == [[]] = [] + | xsize == 0 || ysize == 0 || zsize == 0 = empty3d | otherwise = - [[[f p | i <- [0..scaled_zsize], - let i' = scale_dimension i, - let j' = scale_dimension j, - let k' = scale_dimension k, - let p = (i', j', k') :: Point, - let c = (find_containing_cubes g p) !! 0, - let t = (find_containing_tetrahedra c p) !! 0, - let f = polynomial t] - | j <- [0..scaled_ysize]] - | k <- [0..scaled_xsize]] - where - scale_dimension :: Int -> Double - scale_dimension x = (fromIntegral x) / (fromIntegral scale_factor) - - fvs = function_values g - scaled_zsize = ((length fvs) - 1) * scale_factor - scaled_ysize = (length (head fvs) - 1) * scale_factor - scaled_xsize = (length (head $ head fvs) - 1) * scale_factor + R.force $ R.traverse arr transExtent (zoom_lookup g) + where + arr = function_values g + (xsize, ysize, zsize) = dims arr + transExtent = zoom_shape scale_factor