X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FGrid.hs;h=6a9a8e5edd9ee62907a1486e29c25b334bedc041;hb=6c6ca17ba52b570cc50c1a9546ee9b6a5d3266fd;hp=6d360e2c103d61cc6b41a9cc3873f52db756e169;hpb=6fb9ab6b6068870323e996da931fc04c7710e3e4;p=spline3.git diff --git a/src/Grid.hs b/src/Grid.hs index 6d360e2..6a9a8e5 100644 --- a/src/Grid.hs +++ b/src/Grid.hs @@ -4,21 +4,36 @@ module Grid where -import Cube (Cube(Cube)) +import qualified Data.Array.Repa as R +import Test.QuickCheck (Arbitrary(..), Gen, Positive(..)) + +import Cube (Cube(Cube), find_containing_tetrahedra) import FunctionValues +import Point (Point) +import ScaleFactor +import Tetrahedron (polynomial) +import Values (Values3D, dims, empty3d, zoom_shape) + -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one -- another in each direction (x,y,z). data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! - function_values :: [[[Double]]] } + function_values :: Values3D } deriving (Eq, Show) +instance Arbitrary Grid where + arbitrary = do + (Positive h') <- arbitrary :: Gen (Positive Double) + fvs <- arbitrary :: Gen Values3D + return (make_grid h' fvs) + + -- | The constructor that we want people to use. If we're passed a -- non-positive grid size, we throw an error. -make_grid :: Double -> [[[Double]]] -> Grid +make_grid :: Double -> Values3D -> Grid make_grid grid_size values | grid_size <= 0 = error "grid size must be positive" | otherwise = Grid grid_size values @@ -26,22 +41,104 @@ make_grid grid_size values -- | Creates an empty grid with grid size 1. empty_grid :: Grid -empty_grid = Grid 1 [[[]]] - +empty_grid = Grid 1 empty3d --- This is how we do a 'for' loop in Haskell. --- No, seriously. +-- | Returns a three-dimensional list of cubes centered on the grid +-- points of g with the appropriate 'FunctionValues'. cubes :: Grid -> [[[Cube]]] cubes g - | fvs == [[[]]] = [[[]]] - | head fvs == [[]] = [[[]]] + | xsize == 0 || ysize == 0 || zsize == 0 = [[[]]] | otherwise = [[[ Cube (h g) i j k (make_values fvs i j k) | i <- [0..xsize]] | j <- [0..ysize]] | k <- [0..zsize]] where fvs = function_values g - zsize = (length fvs) - 1 - ysize = (length $ head fvs) - 1 - xsize = (length $ head $ head fvs) - 1 + (xsize, ysize, zsize) = dims fvs + + +-- | Takes a grid and a position as an argument and returns the cube +-- centered on that position. If there is no cube there (i.e. the +-- position is outside of the grid), it will throw an error. +cube_at :: Grid -> Int -> Int -> Int -> Cube +cube_at g i j k + | i < 0 = error "i < 0 in cube_at" + | j < 0 = error "j < 0 in cube_at" + | k < 0 = error "k < 0 in cube_at" + | otherwise = + let zsize = length (cubes g) in + if k >= zsize then + error "k >= xsize in cube_at" + else + let ysize = length ((cubes g) !! k) in + if j >= ysize then + error "j >= ysize in cube_at" + else + let xsize = length (((cubes g) !! k) !! j) in + if i >= xsize then + error "i >= xsize in cube_at" + else + (((cubes g) !! k) !! j) !! i + + +-- The first cube along any axis covers (-h/2, h/2). The second +-- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. +-- +-- We translate the (x,y,z) coordinates forward by 'h/2' so that the +-- first covers (0, h), the second covers (h, 2h), etc. This makes +-- it easy to figure out which cube contains the given point. +calculate_containing_cube_coordinate :: Grid -> Double -> Int +calculate_containing_cube_coordinate g coord + -- Don't use a cube on the boundary if we can help it. This + -- returns cube #1 if we would have returned cube #0 and cube #1 + -- exists. + | coord == offset && (xsize > 0 && ysize > 0 && zsize > 0) = 1 + | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 + where + (xsize, ysize, zsize) = dims (function_values g) + cube_width = (h g) + offset = cube_width / 2 + + +-- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'. +-- Since our grid is rectangular, we can figure this out without having +-- to check every cube. +find_containing_cube :: Grid -> Point -> Cube +find_containing_cube g p = + cube_at g i j k + where + (x, y, z) = p + i = calculate_containing_cube_coordinate g x + j = calculate_containing_cube_coordinate g y + k = calculate_containing_cube_coordinate g z + + +{-# INLINE zoom_lookup #-} +zoom_lookup :: Grid -> ScaleFactor -> a -> (R.DIM3 -> Double) +zoom_lookup g scale_factor _ = zoom_result g scale_factor + + +{-# INLINE zoom_result #-} +zoom_result :: Grid -> ScaleFactor -> R.DIM3 -> Double +zoom_result g (sfx, sfy, sfz) (R.Z R.:. i R.:. j R.:. k) = + f p + where + i' = (fromIntegral i) / (fromIntegral sfx) + j' = (fromIntegral j) / (fromIntegral sfy) + k' = (fromIntegral k) / (fromIntegral sfz) + p = (i', j', k') :: Point + c = find_containing_cube g p + t = head (find_containing_tetrahedra c p) + f = polynomial t + + +zoom :: Grid -> ScaleFactor -> Values3D +zoom g scale_factor + | xsize == 0 || ysize == 0 || zsize == 0 = empty3d + | otherwise = + R.force $ R.traverse arr transExtent (zoom_lookup g scale_factor) + where + arr = function_values g + (xsize, ysize, zsize) = dims arr + transExtent = zoom_shape scale_factor