X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FGrid.hs;h=647ec574f08b5338ce58042f9a54c9d3fcec3ff8;hb=3f0b6b7faecc561af0b7312a11c73a44a1b416f6;hp=7325d2b5b0968f5860834e21b809e9b67995dba8;hpb=c4701eee43e313f634d3d76faee681ff28d76b72;p=spline3.git diff --git a/src/Grid.hs b/src/Grid.hs index 7325d2b..647ec57 100644 --- a/src/Grid.hs +++ b/src/Grid.hs @@ -1,24 +1,37 @@ -- | The Grid module just contains the Grid type and two constructors -- for it. We hide the main Grid constructor because we don't want -- to allow instantiation of a grid with h <= 0. -module Grid +module Grid ( + cube_at, + grid_tests, + make_grid, + slow_tests, + zoom + ) where -import Data.Array (Array, array, (!)) import qualified Data.Array.Repa as R -import Test.QuickCheck (Arbitrary(..), Gen, Positive(..)) +import Test.HUnit +import Test.Framework (Test, testGroup) +import Test.Framework.Providers.HUnit (testCase) +import Test.Framework.Providers.QuickCheck2 (testProperty) +import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose) -import Cube (Cube(Cube), find_containing_tetrahedron) +import Assertions +import Comparisons +import Cube (Cube(Cube), + find_containing_tetrahedron, + tetrahedra, + tetrahedron) +import Examples import FunctionValues import Point (Point) import ScaleFactor -import Tetrahedron (polynomial) +import Tetrahedron (Tetrahedron, c, polynomial, v0, v1, v2, v3) +import ThreeDimensional import Values (Values3D, dims, empty3d, zoom_shape) -type CubeGrid = Array (Int,Int,Int) Cube - - -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one @@ -43,30 +56,6 @@ make_grid grid_size values | otherwise = Grid grid_size values --- | Creates an empty grid with grid size 1. -empty_grid :: Grid -empty_grid = Grid 1 empty3d - - --- | Returns a three-dimensional array of cubes centered on the grid --- points of g with the appropriate 'FunctionValues'. -cubes :: Grid -> CubeGrid -cubes g - = array (lbounds, ubounds) - [ ((i,j,k), cube_ijk) - | i <- [0..xmax], - j <- [0..ymax], - k <- [0..zmax], - let cube_ijk = Cube (h g) i j k (make_values fvs i j k)] - where - xmax = xsize - 1 - ymax = ysize - 1 - zmax = zsize - 1 - lbounds = (0, 0, 0) - ubounds = (xmax, ymax, zmax) - fvs = function_values g - (xsize, ysize, zsize) = dims fvs - -- | Takes a grid and a position as an argument and returns the cube -- centered on that position. If there is no cube there (i.e. the @@ -79,10 +68,13 @@ cube_at g i j k | j >= ysize = error "j >= ysize in cube_at" | k < 0 = error "k < 0 in cube_at" | k >= zsize = error "k >= zsize in cube_at" - | otherwise = (cubes g) ! (i,j,k) - where + | otherwise = Cube delta i j k fvs' tet_vol + where fvs = function_values g (xsize, ysize, zsize) = dims fvs + fvs' = make_values fvs i j k + delta = h g + tet_vol = (1/24)*(delta^(3::Int)) -- The first cube along any axis covers (-h/2, h/2). The second -- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. @@ -95,8 +87,8 @@ calculate_containing_cube_coordinate g coord -- Don't use a cube on the boundary if we can help it. This -- returns cube #1 if we would have returned cube #0 and cube #1 -- exists. - | coord == offset && (xsize > 0 && ysize > 0 && zsize > 0) = 1 | coord < offset = 0 + | coord == offset && (xsize > 1 && ysize > 1 && zsize > 1) = 1 | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 where (xsize, ysize, zsize) = dims (function_values g) @@ -118,30 +110,293 @@ find_containing_cube g p = {-# INLINE zoom_lookup #-} -zoom_lookup :: Grid -> ScaleFactor -> a -> (R.DIM3 -> Double) -zoom_lookup g scale_factor _ = zoom_result g scale_factor +zoom_lookup :: Values3D -> ScaleFactor -> a -> (R.DIM3 -> Double) +zoom_lookup v3d scale_factor _ = + zoom_result v3d scale_factor {-# INLINE zoom_result #-} -zoom_result :: Grid -> ScaleFactor -> R.DIM3 -> Double -zoom_result g (sfx, sfy, sfz) (R.Z R.:. i R.:. j R.:. k) = +zoom_result :: Values3D -> ScaleFactor -> R.DIM3 -> Double +zoom_result v3d (sfx, sfy, sfz) (R.Z R.:. m R.:. n R.:. o) = f p where - i' = (fromIntegral i) / (fromIntegral sfx) - j' = (fromIntegral j) / (fromIntegral sfy) - k' = (fromIntegral k) / (fromIntegral sfz) - p = (i', j', k') :: Point - c = find_containing_cube g p - t = find_containing_tetrahedron c p + g = make_grid 1 v3d + offset = (h g)/2 + m' = (fromIntegral m) / (fromIntegral sfx) - offset + n' = (fromIntegral n) / (fromIntegral sfy) - offset + o' = (fromIntegral o) / (fromIntegral sfz) - offset + p = (m', n', o') :: Point + cube = find_containing_cube g p + t = find_containing_tetrahedron cube p f = polynomial t -zoom :: Grid -> ScaleFactor -> Values3D -zoom g scale_factor +zoom :: Values3D -> ScaleFactor -> Values3D +zoom v3d scale_factor | xsize == 0 || ysize == 0 || zsize == 0 = empty3d | otherwise = - R.force $ R.traverse arr transExtent (zoom_lookup g scale_factor) + R.force $ R.unsafeTraverse v3d transExtent (zoom_lookup v3d scale_factor) where - arr = function_values g - (xsize, ysize, zsize) = dims arr + (xsize, ysize, zsize) = dims v3d transExtent = zoom_shape scale_factor + + + +-- | Check all coefficients of tetrahedron0 belonging to the cube +-- centered on (1,1,1) with a grid constructed from the trilinear +-- values. See example one in the paper. +-- +-- We also verify that the four vertices on face0 of the cube are +-- in the correct location. +-- +trilinear_c0_t0_tests :: Test.Framework.Test +trilinear_c0_t0_tests = + testGroup "trilinear c0 t0" + [testGroup "coefficients" + [testCase "c0030 is correct" test_trilinear_c0030, + testCase "c0003 is correct" test_trilinear_c0003, + testCase "c0021 is correct" test_trilinear_c0021, + testCase "c0012 is correct" test_trilinear_c0012, + testCase "c0120 is correct" test_trilinear_c0120, + testCase "c0102 is correct" test_trilinear_c0102, + testCase "c0111 is correct" test_trilinear_c0111, + testCase "c0210 is correct" test_trilinear_c0210, + testCase "c0201 is correct" test_trilinear_c0201, + testCase "c0300 is correct" test_trilinear_c0300, + testCase "c1020 is correct" test_trilinear_c1020, + testCase "c1002 is correct" test_trilinear_c1002, + testCase "c1011 is correct" test_trilinear_c1011, + testCase "c1110 is correct" test_trilinear_c1110, + testCase "c1101 is correct" test_trilinear_c1101, + testCase "c1200 is correct" test_trilinear_c1200, + testCase "c2010 is correct" test_trilinear_c2010, + testCase "c2001 is correct" test_trilinear_c2001, + testCase "c2100 is correct" test_trilinear_c2100, + testCase "c3000 is correct" test_trilinear_c3000], + + testGroup "face0 vertices" + [testCase "v0 is correct" test_trilinear_f0_t0_v0, + testCase "v1 is correct" test_trilinear_f0_t0_v1, + testCase "v2 is correct" test_trilinear_f0_t0_v2, + testCase "v3 is correct" test_trilinear_f0_t0_v3] + ] + where + g = make_grid 1 trilinear + cube = cube_at g 1 1 1 + t = tetrahedron cube 0 + + test_trilinear_c0030 :: Assertion + test_trilinear_c0030 = + assertAlmostEqual "c0030 is correct" (c t 0 0 3 0) (17/8) + + test_trilinear_c0003 :: Assertion + test_trilinear_c0003 = + assertAlmostEqual "c0003 is correct" (c t 0 0 0 3) (27/8) + + test_trilinear_c0021 :: Assertion + test_trilinear_c0021 = + assertAlmostEqual "c0021 is correct" (c t 0 0 2 1) (61/24) + + test_trilinear_c0012 :: Assertion + test_trilinear_c0012 = + assertAlmostEqual "c0012 is correct" (c t 0 0 1 2) (71/24) + + test_trilinear_c0120 :: Assertion + test_trilinear_c0120 = + assertAlmostEqual "c0120 is correct" (c t 0 1 2 0) (55/24) + + test_trilinear_c0102 :: Assertion + test_trilinear_c0102 = + assertAlmostEqual "c0102 is correct" (c t 0 1 0 2) (73/24) + + test_trilinear_c0111 :: Assertion + test_trilinear_c0111 = + assertAlmostEqual "c0111 is correct" (c t 0 1 1 1) (8/3) + + test_trilinear_c0210 :: Assertion + test_trilinear_c0210 = + assertAlmostEqual "c0210 is correct" (c t 0 2 1 0) (29/12) + + test_trilinear_c0201 :: Assertion + test_trilinear_c0201 = + assertAlmostEqual "c0201 is correct" (c t 0 2 0 1) (11/4) + + test_trilinear_c0300 :: Assertion + test_trilinear_c0300 = + assertAlmostEqual "c0300 is correct" (c t 0 3 0 0) (5/2) + + test_trilinear_c1020 :: Assertion + test_trilinear_c1020 = + assertAlmostEqual "c1020 is correct" (c t 1 0 2 0) (8/3) + + test_trilinear_c1002 :: Assertion + test_trilinear_c1002 = + assertAlmostEqual "c1002 is correct" (c t 1 0 0 2) (23/6) + + test_trilinear_c1011 :: Assertion + test_trilinear_c1011 = + assertAlmostEqual "c1011 is correct" (c t 1 0 1 1) (13/4) + + test_trilinear_c1110 :: Assertion + test_trilinear_c1110 = + assertAlmostEqual "c1110 is correct" (c t 1 1 1 0) (23/8) + + test_trilinear_c1101 :: Assertion + test_trilinear_c1101 = + assertAlmostEqual "c1101 is correct" (c t 1 1 0 1) (27/8) + + test_trilinear_c1200 :: Assertion + test_trilinear_c1200 = + assertAlmostEqual "c1200 is correct" (c t 1 2 0 0) 3 + + test_trilinear_c2010 :: Assertion + test_trilinear_c2010 = + assertAlmostEqual "c2010 is correct" (c t 2 0 1 0) (10/3) + + test_trilinear_c2001 :: Assertion + test_trilinear_c2001 = + assertAlmostEqual "c2001 is correct" (c t 2 0 0 1) 4 + + test_trilinear_c2100 :: Assertion + test_trilinear_c2100 = + assertAlmostEqual "c2100 is correct" (c t 2 1 0 0) (7/2) + + test_trilinear_c3000 :: Assertion + test_trilinear_c3000 = + assertAlmostEqual "c3000 is correct" (c t 3 0 0 0) 4 + + test_trilinear_f0_t0_v0 :: Assertion + test_trilinear_f0_t0_v0 = + assertEqual "v0 is correct" (v0 t) (1, 1, 1) + + test_trilinear_f0_t0_v1 :: Assertion + test_trilinear_f0_t0_v1 = + assertEqual "v1 is correct" (v1 t) (0.5, 1, 1) + + test_trilinear_f0_t0_v2 :: Assertion + test_trilinear_f0_t0_v2 = + assertEqual "v2 is correct" (v2 t) (0.5, 0.5, 1.5) + + test_trilinear_f0_t0_v3 :: Assertion + test_trilinear_f0_t0_v3 = + assertClose "v3 is correct" (v3 t) (0.5, 1.5, 1.5) + + +test_trilinear_reproduced :: Assertion +test_trilinear_reproduced = + assertTrue "trilinears are reproduced correctly" $ + and [p (i', j', k') ~= value_at trilinear i j k + | i <- [0..2], + j <- [0..2], + k <- [0..2], + t <- tetrahedra c0, + let p = polynomial t, + let i' = fromIntegral i, + let j' = fromIntegral j, + let k' = fromIntegral k] + where + g = make_grid 1 trilinear + c0 = cube_at g 1 1 1 + + +test_zeros_reproduced :: Assertion +test_zeros_reproduced = + assertTrue "the zero function is reproduced correctly" $ + and [p (i', j', k') ~= value_at zeros i j k + | i <- [0..2], + j <- [0..2], + k <- [0..2], + let i' = fromIntegral i, + let j' = fromIntegral j, + let k' = fromIntegral k] + where + g = make_grid 1 zeros + c0 = cube_at g 1 1 1 + t0 = tetrahedron c0 0 + p = polynomial t0 + + +-- | Make sure we can reproduce a 9x9x9 trilinear from the 3x3x3 one. +test_trilinear9x9x9_reproduced :: Assertion +test_trilinear9x9x9_reproduced = + assertTrue "trilinear 9x9x9 is reproduced correctly" $ + and [p (i', j', k') ~= value_at trilinear9x9x9 i j k + | i <- [0..8], + j <- [0..8], + k <- [0..8], + t <- tetrahedra c0, + let p = polynomial t, + let i' = (fromIntegral i) * 0.5, + let j' = (fromIntegral j) * 0.5, + let k' = (fromIntegral k) * 0.5] + where + g = make_grid 1 trilinear + c0 = cube_at g 1 1 1 + + +-- | The point 'p' in this test lies on the boundary of tetrahedra 12 and 15. +-- However, the 'contains_point' test fails due to some numerical innacuracy. +-- This bug should have been fixed by setting a positive tolerance level. +-- +-- Example from before the fix: +-- +-- b1 (tetrahedron c 20) (0, 17.5, 0.5) +-- -0.0 +-- +test_tetrahedra_collision_sensitivity :: Assertion +test_tetrahedra_collision_sensitivity = + assertTrue "tetrahedron collision tests isn't too sensitive" $ + contains_point t20 p + where + g = make_grid 1 naturals_1d + cube = cube_at g 0 18 0 + p = (0, 17.5, 0.5) :: Point + t20 = tetrahedron cube 20 + + +prop_cube_indices_never_go_out_of_bounds :: Grid -> Gen Bool +prop_cube_indices_never_go_out_of_bounds g = + do + let delta = Grid.h g + let coordmin = negate (delta/2) + + let (xsize, ysize, zsize) = dims $ function_values g + let xmax = delta*(fromIntegral xsize) - (delta/2) + let ymax = delta*(fromIntegral ysize) - (delta/2) + let zmax = delta*(fromIntegral zsize) - (delta/2) + + x <- choose (coordmin, xmax) + y <- choose (coordmin, ymax) + z <- choose (coordmin, zmax) + + let idx_x = calculate_containing_cube_coordinate g x + let idx_y = calculate_containing_cube_coordinate g y + let idx_z = calculate_containing_cube_coordinate g z + + return $ + idx_x >= 0 && + idx_x <= xsize - 1 && + idx_y >= 0 && + idx_y <= ysize - 1 && + idx_z >= 0 && + idx_z <= zsize - 1 + + + +grid_tests :: Test.Framework.Test +grid_tests = + testGroup "Grid Tests" [ + trilinear_c0_t0_tests, + testCase "tetrahedra collision test isn't too sensitive" + test_tetrahedra_collision_sensitivity, + testCase "trilinear reproduced" test_trilinear_reproduced, + testCase "zeros reproduced" test_zeros_reproduced ] + + +-- Do the slow tests last so we can stop paying attention. +slow_tests :: Test.Framework.Test +slow_tests = + testGroup "Slow Tests" [ + testProperty "cube indices within bounds" + prop_cube_indices_never_go_out_of_bounds, + testCase "trilinear9x9x9 reproduced" test_trilinear9x9x9_reproduced ]