X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FFEM%2FR1.hs;h=28317a6faecabaf0a079215a192f961a7d5e5be3;hb=45aa63a662556bc9ed0f6018f9f3f580586f38a9;hp=217abd3009acaac271e2a17fe99eccd6e5df9050;hpb=25706b7e253af82d8ca9128eb23772c47ee6c0c3;p=numerical-analysis.git diff --git a/src/FEM/R1.hs b/src/FEM/R1.hs index 217abd3..28317a6 100644 --- a/src/FEM/R1.hs +++ b/src/FEM/R1.hs @@ -28,12 +28,13 @@ module FEM.R1 where +import Algebra.Absolute ( abs ) import qualified Algebra.Algebraic as Algebraic ( C ) import qualified Algebra.Field as Field ( C ) import qualified Algebra.RealField as RealField ( C ) import qualified Algebra.ToRational as ToRational ( C ) import Data.Vector.Fixed ( Arity, S ) -import NumericPrelude +import NumericPrelude hiding ( abs ) import qualified Prelude as P import Integration.Gaussian ( gaussian ) @@ -43,6 +44,7 @@ import Linear.Matrix ( Row, (!!!), construct, + dot, element_sum2, fromList, ifoldl2, @@ -55,7 +57,7 @@ import Linear.Matrix ( zip2, zipwith2 ) import Linear.System ( solve_positive_definite ) -import Piecewise ( Piecewise(..), from_intervals ) +import Piecewise ( Piecewise(..), evaluate', from_intervals ) import Polynomials.Orthogonal ( legendre ) -- | Dirichlet boundary conditions. Since u(a)=u(b)=0 are fixed, @@ -281,22 +283,8 @@ big_Ns_matrix = -- -- Examples: -- --- >>> import Linear.Matrix ( Col4, frobenius_norm, fromList ) --- >>> import Naturals ( N3, N4, N7 ) --- --- >>> let big_A = const (1::Double) --- >>> let c x = sin x --- >>> let f x = x*(sin x) --- >>> let bdy = Left (Dirichlet (0,1::Double)) --- >>> let pde = PDE big_A c f bdy --- --- >>> let i1 = (0.0,1/3) --- >>> let i2 = (1/3,2/3) --- >>> let i3 = (2/3,4/5) --- >>> let i4 = (4/5,1.0) --- >>> let mesh = fromList [[i1], [i2], [i3], [i4]] :: Col4 (Double,Double) --- >>> let pvec = fromList [[2],[3],[2],[1]] :: Col4 Int --- >>> let params = Params mesh pvec :: Params N4 N3 N7 Double +-- >>> import Linear.Matrix ( Col7, frobenius_norm ) +-- >>> import FEM.R1.Example1 ( pde', params' ) -- -- >>> let f1 = [0.0418] -- >>> let f2 = [0.0805] @@ -305,8 +293,8 @@ big_Ns_matrix = -- >>> let f5 = [-0.0332] -- >>> let f6 = [-0.0054] -- >>> let f7 = [-0.0267] --- >>> let expected = fromList [f1,f2,f3,f4,f5,f6,f7] :: Col N7 Double --- >>> let actual = big_F pde params +-- >>> let expected = fromList [f1,f2,f3,f4,f5,f6,f7] :: Col7 Double +-- >>> let actual = big_F pde' params' -- >>> frobenius_norm (actual - expected) < 1e-4 -- True -- @@ -384,7 +372,7 @@ big_K_elem :: forall m n l a b. -> b -> Mat l l a big_K_elem pde params _ k cur_K _ = - ifoldl2 accum cur_K (big_N's_matrix :: Mat m (S n) (a -> a)) + ifoldl2 accum cur_K (big_N's_matrix :: Mat (S n) (S n) (a -> a)) where accum :: Int -> Int -> Mat l l a -> (a -> a) -> Mat l l a accum i j prev_K these_N's = @@ -394,8 +382,11 @@ big_K_elem pde params _ k cur_K _ = (x1,x2) = (mesh params) !!! (k,0) q = affine_inv (x1,x2) integrand x = ((big_A pde) (q x)) * (these_N's x) - -- The pointer matrix numbers from 1 so subtract one here to - -- get the right index. + -- The pointer matrix numbers from 1 so subtract one below to + -- get the right index. The indices i,j have upper bounds + -- dependent on the element k. Since we statically create the + -- matrix of basis function derivatives, we have to check here + -- whether or not i,j exceed the max index. row_idx = ((pointer params) !!! (k,i)) - 1 col_idx = ((pointer params) !!! (k,j)) - 1 integral = (two/(x2 - x1))* (gaussian integrand) @@ -410,22 +401,8 @@ big_K_elem pde params _ k cur_K _ = -- -- Examples: -- --- >>> import Linear.Matrix ( Col4, frobenius_norm, fromList ) --- >>> import Naturals ( N3, N4, N7 ) --- --- >>> let big_A = const (1::Double) --- >>> let c x = sin x --- >>> let f x = x*(sin x) --- >>> let bdy = Left (Dirichlet (0,1::Double)) --- >>> let pde = PDE big_A c f bdy --- --- >>> let i1 = (0.0,1/3) --- >>> let i2 = (1/3,2/3) --- >>> let i3 = (2/3,4/5) --- >>> let i4 = (4/5,1.0) --- >>> let mesh = fromList [[i1], [i2], [i3], [i4]] :: Col4 (Double,Double) --- >>> let pvec = fromList [[2],[3],[2],[1]] :: Col4 Int --- >>> let params = Params mesh pvec :: Params N4 N3 N7 Double +-- >>> import Linear.Matrix ( Mat7, frobenius_norm ) +-- >>> import FEM.R1.Example1 ( pde', params' ) -- -- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] -- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] @@ -434,8 +411,8 @@ big_K_elem pde params _ k cur_K _ = -- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] -- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] -- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] --- >>> let expected = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double --- >>> let actual = big_K pde params +-- >>> let expected = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat7 Double +-- >>> let actual = big_K pde' params' -- >>> frobenius_norm (actual - expected) < 1e-10 -- True -- @@ -464,7 +441,7 @@ big_M_elem :: forall m n l a b. -> b -> Mat l l a big_M_elem pde params _ k cur_M _ = - ifoldl2 accum cur_M (big_Ns_matrix :: Mat m (S n) (a -> a)) + ifoldl2 accum cur_M (big_Ns_matrix :: Mat (S n) (S n) (a -> a)) where accum :: Int -> Int -> Mat l l a -> (a -> a) -> Mat l l a accum i j prev_M these_Ns = @@ -489,22 +466,8 @@ big_M_elem pde params _ k cur_M _ = -- -- Examples: -- --- >>> import Linear.Matrix ( Col4, frobenius_norm, fromList ) --- >>> import Naturals ( N3, N4, N7 ) --- --- >>> let big_A = const (1::Double) --- >>> let c x = sin x --- >>> let f x = x*(sin x) --- >>> let bdy = Left (Dirichlet (0,1::Double)) --- >>> let pde = PDE big_A c f bdy --- --- >>> let i1 = (0.0,1/3) --- >>> let i2 = (1/3,2/3) --- >>> let i3 = (2/3,4/5) --- >>> let i4 = (4/5,1.0) --- >>> let mesh = fromList [[i1], [i2], [i3], [i4]] :: Col4 (Double,Double) --- >>> let pvec = fromList [[2],[3],[2],[1]] :: Col4 Int --- >>> let params = Params mesh pvec :: Params N4 N3 N7 Double +-- >>> import Linear.Matrix ( Mat7, frobenius_norm ) +-- >>> import FEM.R1.Example1 ( pde', params' ) -- -- >>> let m1 = [0.0723,0.0266,0,-0.0135,-0.0305,0.0058,0] :: [Double] -- >>> let m2 = [0.0266,0.0897,0.0149,0,-0.0345,-0.0109,-0.0179] :: [Double] @@ -514,8 +477,8 @@ big_M_elem pde params _ k cur_M _ = -- >>> let m6 = [0.0058,-0.0109,0,0,0.0018,0.0076,0] :: [Double] -- >>> let m7 = [0,-0.0179,-0.0185,0,0,0,0.0178] :: [Double] -- --- >>> let expected = fromList [m1,m2,m3,m4,m5,m6,m7] :: Mat N7 N7 Double --- >>> let actual = big_M pde params +-- >>> let expected = fromList [m1,m2,m3,m4,m5,m6,m7] :: Mat7 Double +-- >>> let actual = big_M pde' params' -- >>> frobenius_norm (actual - expected) < 1e-3 -- True -- @@ -536,22 +499,8 @@ big_M pde params = -- -- Examples: -- --- >>> import Linear.Matrix ( Col4, Col7, frobenius_norm, fromList ) --- >>> import Naturals ( N3, N4, N7 ) --- --- >>> let big_A = const (1::Double) --- >>> let c x = sin x --- >>> let f x = x*(sin x) --- >>> let bdy = Left (Dirichlet (0,1::Double)) --- >>> let pde = PDE big_A c f bdy --- --- >>> let i1 = (0.0,1/3) --- >>> let i2 = (1/3,2/3) --- >>> let i3 = (2/3,4/5) --- >>> let i4 = (4/5,1.0) --- >>> let mesh = fromList [[i1], [i2], [i3], [i4]] :: Col4 (Double,Double) --- >>> let pvec = fromList [[2],[3],[2],[1]] :: Col4 Int --- >>> let params = Params mesh pvec :: Params N4 N3 N7 Double +-- >>> import Linear.Matrix ( Col7, frobenius_norm ) +-- >>> import FEM.R1.Example1 ( pde', params' ) -- -- >>> let c1 = [0.02366220347687] :: [Double] -- >>> let c2 = [0.03431630082636] :: [Double] @@ -560,8 +509,9 @@ big_M pde params = -- >>> let c5 = [-0.00518637005151] :: [Double] -- >>> let c6 = [-0.00085028505337] :: [Double] -- >>> let c7 = [-0.00170478210110] :: [Double] +-- >>> -- >>> let expected = fromList [c1,c2,c3,c4,c5,c6,c7] :: Col7 Double --- >>> let actual = coefficients pde params +-- >>> let actual = coefficients pde' params' -- >>> frobenius_norm (actual - expected) < 1e-8 -- True -- @@ -580,7 +530,7 @@ coefficients pde params = solution :: forall m n l a. (Arity m, Arity n, Arity l, - Algebraic.C a, Eq a, RealField.C a, ToRational.C a, Show a) + Algebraic.C a, Eq a, RealField.C a, ToRational.C a) => PDE a -> Params m n (S l) a -> Piecewise a @@ -599,7 +549,7 @@ solution pde params = mesh_with_ptr_rows = zip2 (mesh params) (rows2 ptr) make_local_coeffs :: (Interval a, Row (S n) Int) -> Row (S n) a - make_local_coeffs (interval, ptr_row) = + make_local_coeffs (_, ptr_row) = construct lambda where lambda _ j = if (ptr_row !!! (0,j)) == zero @@ -623,70 +573,50 @@ solution pde params = solved_column = map2 solve_piece $ mesh_with_coeffs solve_piece :: (Interval a, Row (S n) a) -> (Interval a, (a -> a)) - solve_piece (interval, coeffs_row) = (interval, f) + solve_piece (interval, coeffs_row) = (interval, g) where coeffs_col = transpose coeffs_row - f x = element_sum2 $ zipwith2 combine coeffs_col global_basis_functions + g x = element_sum2 $ zipwith2 combine coeffs_col global_basis_functions where xi = (affine interval) x combine ci ni = ci*(ni xi) - - -solution' :: forall m n l a. - (Arity m, Arity n, Arity l, - Algebraic.C a, Eq a, RealField.C a, ToRational.C a, Show a) - => Col (S l) a - -> PDE a - -> Params m n (S l) a - -> Piecewise a -solution' global_coeffs pde params = - from_intervals $ map head $ toList $ solved_column +energy_fem :: (Arity m, Arity n, Arity l, + Algebraic.C a, Eq a, RealField.C a, ToRational.C a) + => PDE a + -> Params m n (S l) a + -> a +energy_fem pde params = + (coefficients pde params) `dot` (big_F pde params) + + +relative_error :: forall m n l a. + (Arity m, Arity n, Arity l, + Algebraic.C a, Eq a, RealField.C a, ToRational.C a) + => PDE a + -> Params m n (S l) a + -> a -- ^ The energy norm of the true solution @u@ + -> a +relative_error pde params energy_true = + cent * sqrt(energy_true - (energy_fem pde params)/energy_true) where --- global_coeffs :: Col (S l) a --- global_coeffs = coefficients pde params - - ptr :: Mat m (S n) Int - ptr = pointer params - - -- Each mesh element has an associated row in the pointer - -- matrix. Stick them together. - mesh_with_ptr_rows :: Col m (Interval a, Row (S n) Int) - mesh_with_ptr_rows = zip2 (mesh params) (rows2 ptr) - - make_local_coeffs :: (Interval a, Row (S n) Int) -> Row (S n) a - make_local_coeffs (interval, ptr_row) = - construct lambda - where - lambda _ j = if (ptr_row !!! (0,j)) == zero - then zero - else global_coeffs !!! ((ptr_row !!! (0,j)) - 1, 0) + cent = fromInteger 100 - -- Create a column vector for each mesh element containing the global - -- coefficients corresponding to that element. - local_coeffs :: Col m (Row (S n) a) - local_coeffs = map2 make_local_coeffs mesh_with_ptr_rows - global_basis_functions :: Col (S n) (a -> a) - global_basis_functions = - construct lambda - where lambda i _ = big_N (toInteger i) - - mesh_with_coeffs :: Col m (Interval a, Row (S n) a) - mesh_with_coeffs = zip2 (mesh params) local_coeffs - - solved_column :: Col m (Interval a, (a -> a)) - solved_column = map2 solve_piece $ mesh_with_coeffs - - solve_piece :: (Interval a, Row (S n) a) -> (Interval a, (a -> a)) - solve_piece (interval, coeffs_row) = (interval, f) - where - coeffs_col = transpose coeffs_row - - f x = element_sum2 $ zipwith2 combine coeffs_col global_basis_functions - where - xi = (affine interval) x - combine ci ni = ci*(ni xi) +relative_error_pointwise :: forall m n l a. + (Arity m, Arity n, Arity l, + Algebraic.C a, Eq a, RealField.C a, ToRational.C a) + => PDE a + -> Params m n (S l) a + -> (a -> a) -- ^ The true solution @u@ + -> a -- ^ The point @x@ at which to compute the error. + -> a +relative_error_pointwise pde params u x = + cent * ( u_exact - u_fem ) / u_exact + where + u_exact = abs $ u x + u_fem = evaluate' (solution pde params) x + cent = fromInteger 100