X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FCube.hs;h=3c202a7f08b23ab188a2e62166a553bf01a96d8e;hb=993490fd9d940f5e8dea4f934c07c1a5a6c1f8ff;hp=882233f0b656295ccda8ad8f4902fe31cd90cd82;hpb=f96b07dc2004d60bc87a7ff849959ad76fa7bc45;p=spline3.git diff --git a/src/Cube.hs b/src/Cube.hs index 882233f..3c202a7 100644 --- a/src/Cube.hs +++ b/src/Cube.hs @@ -1,52 +1,69 @@ module Cube where -import Grid +import Data.Maybe (fromJust) +import qualified Data.Vector as V ( + Vector, + findIndex, + map, + minimum, + singleton, + snoc, + unsafeIndex + ) +import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose) + +import Cardinal +import qualified Face (Face(Face, v0, v1, v2, v3)) +import FunctionValues import Point +import Tetrahedron (Tetrahedron(Tetrahedron)) import ThreeDimensional -class Gridded a where - back :: a -> Cube - down :: a -> Cube - front :: a -> Cube - left :: a -> Cube - right :: a -> Cube - top :: a -> Cube - - -data Cube = Cube { grid :: Grid, +data Cube = Cube { h :: Double, i :: Int, j :: Int, k :: Int, - datum :: Double } + fv :: FunctionValues, + tetrahedra_volume :: Double } deriving (Eq) +instance Arbitrary Cube where + arbitrary = do + (Positive h') <- arbitrary :: Gen (Positive Double) + i' <- choose (coordmin, coordmax) + j' <- choose (coordmin, coordmax) + k' <- choose (coordmin, coordmax) + fv' <- arbitrary :: Gen FunctionValues + (Positive tet_vol) <- arbitrary :: Gen (Positive Double) + return (Cube h' i' j' k' fv' tet_vol) + where + coordmin = -268435456 -- -(2^29 / 2) + coordmax = 268435456 -- +(2^29 / 2) + + instance Show Cube where show c = - "Cube_" ++ (show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c)) ++ - " (Grid: " ++ (show (grid c)) ++ ")" ++ - " (Center: " ++ (show (center c)) ++ ")" ++ - " (xmin: " ++ (show (xmin c)) ++ ")" ++ - " (xmax: " ++ (show (xmax c)) ++ ")" ++ - " (ymin: " ++ (show (ymin c)) ++ ")" ++ - " (ymax: " ++ (show (ymax c)) ++ ")" ++ - " (zmin: " ++ (show (zmin c)) ++ ")" ++ - " (zmax: " ++ (show (zmax c)) ++ ")" ++ - " (datum: " ++ (show (datum c)) ++ ")\n\n" - + "Cube_" ++ subscript ++ "\n" ++ + " h: " ++ (show (h c)) ++ "\n" ++ + " Center: " ++ (show (center c)) ++ "\n" ++ + " xmin: " ++ (show (xmin c)) ++ "\n" ++ + " xmax: " ++ (show (xmax c)) ++ "\n" ++ + " ymin: " ++ (show (ymin c)) ++ "\n" ++ + " ymax: " ++ (show (ymax c)) ++ "\n" ++ + " zmin: " ++ (show (zmin c)) ++ "\n" ++ + " zmax: " ++ (show (zmax c)) ++ "\n" ++ + " fv: " ++ (show (Cube.fv c)) ++ "\n" + where + subscript = + (show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c)) + + +-- | Returns an empty 'Cube'. empty_cube :: Cube -empty_cube = Cube empty_grid 0 0 0 0 - --- TODO: The paper considers 'i' to be the front/back direction, --- whereas I have it in the left/right direction. -instance Gridded Cube where - back c = cube_at (grid c) ((i c) + 1) (j c) (k c) - down c = cube_at (grid c) (i c) (j c) ((k c) - 1) - front c = cube_at (grid c) ((i c) - 1) (j c) (k c) - left c = cube_at (grid c) (i c) ((j c) - 1) (k c) - right c = cube_at (grid c) (i c) ((j c) + 1) (k c) - top c = cube_at (grid c) (i c) (j c) ((k c) + 1) +empty_cube = Cube 0 0 0 0 empty_values 0 + -- | The left-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -54,7 +71,7 @@ xmin :: Cube -> Double xmin c = (2*i' - 1)*delta / 2 where i' = fromIntegral (i c) :: Double - delta = h (grid c) + delta = h c -- | The right-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -62,7 +79,7 @@ xmax :: Cube -> Double xmax c = (2*i' + 1)*delta / 2 where i' = fromIntegral (i c) :: Double - delta = h (grid c) + delta = h c -- | The front boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -70,7 +87,7 @@ ymin :: Cube -> Double ymin c = (2*j' - 1)*delta / 2 where j' = fromIntegral (j c) :: Double - delta = h (grid c) + delta = h c -- | The back boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -78,7 +95,7 @@ ymax :: Cube -> Double ymax c = (2*j' + 1)*delta / 2 where j' = fromIntegral (j c) :: Double - delta = h (grid c) + delta = h c -- | The bottom boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -86,7 +103,7 @@ zmin :: Cube -> Double zmin c = (2*k' - 1)*delta / 2 where k' = fromIntegral (k c) :: Double - delta = h (grid c) + delta = h c -- | The top boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. @@ -94,93 +111,515 @@ zmax :: Cube -> Double zmax c = (2*k' + 1)*delta / 2 where k' = fromIntegral (k c) :: Double - delta = h (grid c) + delta = h c instance ThreeDimensional Cube where -- | The center of Cube_ijk coincides with v_ijk at -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76. center c = (x, y, z) where - delta = h (grid c) + delta = h c i' = fromIntegral (i c) :: Double j' = fromIntegral (j c) :: Double k' = fromIntegral (k c) :: Double - x = (delta * i') - y = (delta * j') - z = (delta * k') - - contains_point c p - | (x_coord p) < (xmin c) = False - | (x_coord p) > (xmax c) = False - | (y_coord p) < (ymin c) = False - | (y_coord p) > (ymax c) = False - | (z_coord p) < (zmin c) = False - | (z_coord p) > (zmax c) = False + x = delta * i' + y = delta * j' + z = delta * k' + + -- | It's easy to tell if a point is within a cube; just make sure + -- that it falls on the proper side of each of the cube's faces. + contains_point c (x, y, z) + | x < (xmin c) = False + | x > (xmax c) = False + | y < (ymin c) = False + | y > (ymax c) = False + | z < (zmin c) = False + | z > (zmax c) = False | otherwise = True -instance Num Cube where - (Cube g1 i1 j1 k1 d1) + (Cube _ i2 j2 k2 d2) = - Cube g1 (i1 + i2) (j1 + j2) (k1 + k2) (d1 + d2) - (Cube g1 i1 j1 k1 d1) - (Cube _ i2 j2 k2 d2) = - Cube g1 (i1 - i2) (j1 - j2) (k1 - k2) (d1 - d2) +-- Face stuff. - (Cube g1 i1 j1 k1 d1) * (Cube _ i2 j2 k2 d2) = - Cube g1 (i1 * i2) (j1 * j2) (k1 * k2) (d1 * d2) +-- | The top (in the direction of z) face of the cube. +top_face :: Cube -> Face.Face +top_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (delta, -delta, delta) + v1' = (center c) + (delta, delta, delta) + v2' = (center c) + (-delta, delta, delta) + v3' = (center c) + (-delta, -delta, delta) - abs (Cube g1 i1 j1 k1 d1) = - Cube g1 (abs i1) (abs j1) (abs k1) (abs d1) - signum (Cube g1 i1 j1 k1 d1) = - Cube g1 (signum i1) (signum j1) (signum k1) (signum d1) - fromInteger x = empty_cube { datum = (fromIntegral x) } +-- | The back (in the direction of x) face of the cube. +back_face :: Cube -> Face.Face +back_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (delta, -delta, -delta) + v1' = (center c) + (delta, delta, -delta) + v2' = (center c) + (delta, delta, delta) + v3' = (center c) + (delta, -delta, delta) -instance Fractional Cube where - (Cube g1 i1 j1 k1 d1) / (Cube _ _ _ _ d2) = - Cube g1 i1 j1 k1 (d1 / d2) - recip (Cube g1 i1 j1 k1 d1) = - Cube g1 i1 j1 k1 (recip d1) +-- The bottom face (in the direction of -z) of the cube. +down_face :: Cube -> Face.Face +down_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (-delta, -delta, -delta) + v1' = (center c) + (-delta, delta, -delta) + v2' = (center c) + (delta, delta, -delta) + v3' = (center c) + (delta, -delta, -delta) - fromRational q = empty_cube { datum = fromRational q } -reverse_cube :: Grid -> Int -> Int -> Int -> Double -> Cube -reverse_cube g k' j' i' datum' = Cube g i' j' k' datum' +-- | The front (in the direction of -x) face of the cube. +front_face :: Cube -> Face.Face +front_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (-delta, -delta, delta) + v1' = (center c) + (-delta, delta, delta) + v2' = (center c) + (-delta, delta, -delta) + v3' = (center c) + (-delta, -delta, -delta) + +-- | The left (in the direction of -y) face of the cube. +left_face :: Cube -> Face.Face +left_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (delta, -delta, delta) + v1' = (center c) + (-delta, -delta, delta) + v2' = (center c) + (-delta, -delta, -delta) + v3' = (center c) + (delta, -delta, -delta) -cube_at :: Grid -> Int -> Int -> Int -> Cube -cube_at g i' j' k' - | i' >= length (function_values g) = Cube g i' j' k' 0 - | i' < 0 = Cube g i' j' k' 0 - | j' >= length ((function_values g) !! i') = Cube g i' j' k' 0 - | j' < 0 = Cube g i' j' k' 0 - | k' >= length (((function_values g) !! i') !! j') = Cube g i' j' k' 0 - | k' < 0 = Cube g i' j' k' 0 - | otherwise = - Cube g i' j' k' ((((function_values g) !! i') !! j') !! k') --- These next three functions basically form a 'for' loop, looping --- through the xs, ys, and zs in that order. +-- | The right (in the direction of y) face of the cube. +right_face :: Cube -> Face.Face +right_face c = Face.Face v0' v1' v2' v3' + where + delta = (1/2)*(h c) + v0' = (center c) + (-delta, delta, delta) + v1' = (center c) + (delta, delta, delta) + v2' = (center c) + (delta, delta, -delta) + v3' = (center c) + (-delta, delta, -delta) --- | The cubes_from_values function will return a function that takes --- a list of values and returns a list of cubes. It could just as --- well be written to take the values as a parameter; the omission --- of the last parameter is known as an eta reduce. -cubes_from_values :: Grid -> Int -> Int -> ([Double] -> [Cube]) -cubes_from_values g i' j' = - zipWith (reverse_cube g i' j') [0..] --- | The cubes_from_planes function will return a function that takes --- a list of planes and returns a list of cubes. It could just as --- well be written to take the planes as a parameter; the omission --- of the last parameter is known as an eta reduce. -cubes_from_planes :: Grid -> Int -> ([[Double]] -> [[Cube]]) -cubes_from_planes g i' = - zipWith (cubes_from_values g i') [0..] +tetrahedron :: Cube -> Int -> Tetrahedron --- | Takes a grid as an argument, and returns a three-dimensional list --- of cubes centered on its grid points. -cubes :: Grid -> [[[Cube]]] -cubes g = zipWith (cubes_from_planes g) [0..] (function_values g) +tetrahedron c 0 = + Tetrahedron (Cube.fv c) v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (front_face c) + v2' = Face.v0 (front_face c) + v3' = Face.v1 (front_face c) + vol = tetrahedra_volume c + +tetrahedron c 1 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (front_face c) + v2' = Face.v1 (front_face c) + v3' = Face.v2 (front_face c) + fv' = rotate ccwx (Cube.fv c) + vol = tetrahedra_volume c + +tetrahedron c 2 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (front_face c) + v2' = Face.v2 (front_face c) + v3' = Face.v3 (front_face c) + fv' = rotate ccwx $ rotate ccwx $ Cube.fv c + vol = tetrahedra_volume c + +tetrahedron c 3 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (front_face c) + v2' = Face.v3 (front_face c) + v3' = Face.v0 (front_face c) + fv' = rotate cwx (Cube.fv c) + vol = tetrahedra_volume c + +tetrahedron c 4 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (top_face c) + v2' = Face.v0 (top_face c) + v3' = Face.v1 (top_face c) + fv' = rotate cwy (Cube.fv c) + vol = tetrahedra_volume c + +tetrahedron c 5 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (top_face c) + v2' = Face.v1 (top_face c) + v3' = Face.v2 (top_face c) + fv' = rotate cwy $ rotate cwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 6 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (top_face c) + v2' = Face.v2 (top_face c) + v3' = Face.v3 (top_face c) + fv' = rotate cwy $ rotate cwz + $ rotate cwz + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 7 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (top_face c) + v2' = Face.v3 (top_face c) + v3' = Face.v0 (top_face c) + fv' = rotate cwy $ rotate ccwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 8 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (back_face c) + v2' = Face.v0 (back_face c) + v3' = Face.v1 (back_face c) + fv' = rotate cwy $ rotate cwy $ fv c + vol = tetrahedra_volume c + +tetrahedron c 9 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (back_face c) + v2' = Face.v1 (back_face c) + v3' = Face.v2 (back_face c) + fv' = rotate cwy $ rotate cwy + $ rotate cwx + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 10 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (back_face c) + v2' = Face.v2 (back_face c) + v3' = Face.v3 (back_face c) + fv' = rotate cwy $ rotate cwy + $ rotate cwx + $ rotate cwx + $ fv c + + vol = tetrahedra_volume c + +tetrahedron c 11 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (back_face c) + v2' = Face.v3 (back_face c) + v3' = Face.v0 (back_face c) + fv' = rotate cwy $ rotate cwy + $ rotate ccwx + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 12 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (down_face c) + v2' = Face.v0 (down_face c) + v3' = Face.v1 (down_face c) + fv' = rotate ccwy $ fv c + vol = tetrahedra_volume c + +tetrahedron c 13 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (down_face c) + v2' = Face.v1 (down_face c) + v3' = Face.v2 (down_face c) + fv' = rotate ccwy $ rotate ccwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 14 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (down_face c) + v2' = Face.v2 (down_face c) + v3' = Face.v3 (down_face c) + fv' = rotate ccwy $ rotate ccwz + $ rotate ccwz + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 15 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (down_face c) + v2' = Face.v3 (down_face c) + v3' = Face.v0 (down_face c) + fv' = rotate ccwy $ rotate cwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 16 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (right_face c) + v2' = Face.v0 (right_face c) + v3' = Face.v1 (right_face c) + fv' = rotate ccwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 17 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (right_face c) + v2' = Face.v1 (right_face c) + v3' = Face.v2 (right_face c) + fv' = rotate ccwz $ rotate cwy $ fv c + vol = tetrahedra_volume c + +tetrahedron c 18 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (right_face c) + v2' = Face.v2 (right_face c) + v3' = Face.v3 (right_face c) + fv' = rotate ccwz $ rotate cwy + $ rotate cwy + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 19 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (right_face c) + v2' = Face.v3 (right_face c) + v3' = Face.v0 (right_face c) + fv' = rotate ccwz $ rotate ccwy + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 20 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (left_face c) + v2' = Face.v0 (left_face c) + v3' = Face.v1 (left_face c) + fv' = rotate cwz $ fv c + vol = tetrahedra_volume c + +tetrahedron c 21 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (left_face c) + v2' = Face.v1 (left_face c) + v3' = Face.v2 (left_face c) + fv' = rotate cwz $ rotate ccwy $ fv c + vol = tetrahedra_volume c + +tetrahedron c 22 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (left_face c) + v2' = Face.v2 (left_face c) + v3' = Face.v3 (left_face c) + fv' = rotate cwz $ rotate ccwy + $ rotate ccwy + $ fv c + vol = tetrahedra_volume c + +tetrahedron c 23 = + Tetrahedron fv' v0' v1' v2' v3' vol + where + v0' = center c + v1' = center (left_face c) + v2' = Face.v3 (left_face c) + v3' = Face.v0 (left_face c) + fv' = rotate cwz $ rotate cwy + $ fv c + vol = tetrahedra_volume c + +-- Feels dirty, but whatever. +tetrahedron _ _ = error "asked for a nonexistent tetrahedron" + + +-- Only used in tests, so we don't need the added speed +-- of Data.Vector. +tetrahedra :: Cube -> [Tetrahedron] +tetrahedra c = [ tetrahedron c n | n <- [0..23] ] + +front_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron +front_left_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 7) `V.snoc` + (tetrahedron c 20) `V.snoc` + (tetrahedron c 21) + +front_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron +front_left_down_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 2) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 12) `V.snoc` + (tetrahedron c 15) `V.snoc` + (tetrahedron c 21) + +front_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron +front_right_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 1) `V.snoc` + (tetrahedron c 5) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 16) `V.snoc` + (tetrahedron c 19) + +front_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron +front_right_down_tetrahedra c = + V.singleton (tetrahedron c 1) `V.snoc` + (tetrahedron c 2) `V.snoc` + (tetrahedron c 12) `V.snoc` + (tetrahedron c 13) `V.snoc` + (tetrahedron c 18) `V.snoc` + (tetrahedron c 19) + +back_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron +back_left_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 7) `V.snoc` + (tetrahedron c 20) `V.snoc` + (tetrahedron c 21) + +back_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron +back_left_down_tetrahedra c = + V.singleton (tetrahedron c 8) `V.snoc` + (tetrahedron c 11) `V.snoc` + (tetrahedron c 14) `V.snoc` + (tetrahedron c 15) `V.snoc` + (tetrahedron c 22) `V.snoc` + (tetrahedron c 23) + +back_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron +back_right_top_tetrahedra c = + V.singleton (tetrahedron c 4) `V.snoc` + (tetrahedron c 5) `V.snoc` + (tetrahedron c 9) `V.snoc` + (tetrahedron c 10) `V.snoc` + (tetrahedron c 16) `V.snoc` + (tetrahedron c 17) + +back_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron +back_right_down_tetrahedra c = + V.singleton (tetrahedron c 8) `V.snoc` + (tetrahedron c 9) `V.snoc` + (tetrahedron c 13) `V.snoc` + (tetrahedron c 14) `V.snoc` + (tetrahedron c 17) `V.snoc` + (tetrahedron c 18) + +in_top_half :: Cube -> Point -> Bool +in_top_half c (_,_,z) = + distance_from_top <= distance_from_bottom + where + distance_from_top = abs $ (zmax c) - z + distance_from_bottom = abs $ (zmin c) - z + +in_front_half :: Cube -> Point -> Bool +in_front_half c (x,_,_) = + distance_from_front <= distance_from_back + where + distance_from_front = abs $ (xmin c) - x + distance_from_back = abs $ (xmax c) - x + + +in_left_half :: Cube -> Point -> Bool +in_left_half c (_,y,_) = + distance_from_left <= distance_from_right + where + distance_from_left = abs $ (ymin c) - y + distance_from_right = abs $ (ymax c) - y + + +-- | Takes a 'Cube', and returns the Tetrahedra belonging to it that +-- contain the given 'Point'. This should be faster than checking +-- every tetrahedron individually, since we determine which half +-- (hemisphere?) of the cube the point lies in three times: once in +-- each dimension. This allows us to eliminate non-candidates +-- quickly. +-- +-- This can throw an exception, but the use of 'head' might +-- save us some unnecessary computations. +-- +find_containing_tetrahedron :: Cube -> Point -> Tetrahedron +find_containing_tetrahedron c p = + candidates `V.unsafeIndex` (fromJust lucky_idx) + where + front_half = in_front_half c p + top_half = in_top_half c p + left_half = in_left_half c p + + candidates = + if front_half then + + if left_half then + if top_half then + front_left_top_tetrahedra c + else + front_left_down_tetrahedra c + else + if top_half then + front_right_top_tetrahedra c + else + front_right_down_tetrahedra c + + else -- bottom half + + if left_half then + if top_half then + back_left_top_tetrahedra c + else + back_left_down_tetrahedra c + else + if top_half then + back_right_top_tetrahedra c + else + back_right_down_tetrahedra c + + -- Use the dot product instead of 'distance' here to save a + -- sqrt(). So, "distances" below really means "distances squared." + distances = V.map ((dot p) . center) candidates + shortest_distance = V.minimum distances + lucky_idx = V.findIndex + (\t -> (center t) `dot` p == shortest_distance) + candidates