X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fpolynomial.py;h=9ef2902320318141d4089e3a27ff12e8b94e4de2;hb=5cbb93016e4b192d2a2d7be81014a55a33c9a8f9;hp=8b493711924d705e17eb612efd56e390ea98e88e;hpb=892a138853b8152e35605deedbfc8160309c2bc6;p=sage.d.git diff --git a/mjo/polynomial.py b/mjo/polynomial.py index 8b49371..9ef2902 100644 --- a/mjo/polynomial.py +++ b/mjo/polynomial.py @@ -151,7 +151,6 @@ def multidiv(f, gs): sage: set_random_seed() sage: R = PolynomialRing(QQ, 'x,y,z') - sage: x,y,z = R.gens() sage: s = ZZ.random_element(1,5).abs() sage: gs = [ R.random_element() for idx in range(s) ] sage: f = R.random_element(ZZ.random_element(10).abs()) @@ -162,6 +161,19 @@ def multidiv(f, gs): ....: for g in gs )) True + Exercise 8 in Section 2.4 of Cox, Little, and O'Shea says that we + should always get a zero remainder if we divide an element of a + monomial ideal by its generators:: + + sage: set_random_seed() + sage: R = PolynomialRing(QQ,'x,y,z') + sage: gs = R.random_element().monomials() + sage: I = R.ideal(gs) + sage: f = I.random_element(ZZ.random_element(5).abs()) + sage: (qs, r) = multidiv(f, gs) + sage: r.is_zero() + True + """ R = f.parent() s = len(gs) @@ -171,9 +183,8 @@ def multidiv(f, gs): qs = [R.zero()]*s while p != R.zero(): - i = 0 - division_occurred = false - while i < s: + for i in range(0,s): + division_occurred = false # If gs[i].lt() divides p.lt(), then this remainder will # be zero and the quotient will be in R (and not the # fraction ring, which is important). @@ -182,13 +193,7 @@ def multidiv(f, gs): qs[i] += factor p -= factor*gs[i] division_occurred = true - # Don't increment "i" here because we want to try - # again with this "denominator" g[i]. We might - # get another factor out of it, but we know that - # we can't get another factor out of an *earlier* - # denominator g[i-k] for some k. - else: - i += 1 + break if not division_occurred: r += p.lt()