X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Forthogonal_polynomials.py;h=15c695611fb3e287c357075f45e55eeddf550f7f;hb=f38e111cd026f1ecdab6dd2d2ed194a8745252a8;hp=7544f65c048c72662ff72c40bbcb1197a98382a7;hpb=2066c9dd3c3cbeca2b59bf31bce3fa3ce5fd7895;p=sage.d.git diff --git a/mjo/orthogonal_polynomials.py b/mjo/orthogonal_polynomials.py index 7544f65..15c6956 100644 --- a/mjo/orthogonal_polynomials.py +++ b/mjo/orthogonal_polynomials.py @@ -79,7 +79,7 @@ def legendre_p(n, x, a = -1, b = 1): ....: return sum( inner_product(v, b)*b/norm(b)**2 ....: for b in basis) sage: f = sin(x) - sage: legendre_basis = [ legendre_p(k, x, a, b) for k in xrange(4) ] + sage: legendre_basis = [ legendre_p(k, x, a, b) for k in range(4) ] sage: proj = project(legendre_basis, f) sage: proj.simplify_trig() 5/2*(7*(pi^2 - 15)*x^3 - 3*(pi^4 - 21*pi^2)*x)/pi^6 @@ -89,7 +89,7 @@ def legendre_p(n, x, a = -1, b = 1): We should agree with Maxima for all `n`:: sage: eq = lambda k: bool(legendre_p(k,x) == legendre_P(k,x)) - sage: all( eq(k) for k in xrange(20) ) # long time + sage: all( eq(k) for k in range(20) ) # long time True We can evaluate the result of the zeroth polynomial:: @@ -193,6 +193,6 @@ def legendre_p(n, x, a = -1, b = 1): # From Abramowitz & Stegun, (22.3.2) with alpha = beta = 0. # Also massaged to support finite field elements. - P = sum( c(m)*g(m) for m in xrange(n+1) )/(2**n) + P = sum( c(m)*g(m) for m in range(n+1) )/(2**n) return P