X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Finterpolation.py;h=dc061077eda70879682048775c3ca69e423e9450;hb=2fa2a7a2f6a5d5f1628a4f5cf3301d5e7f670038;hp=5d65d154e1ce567a7a408c305abcf91596176f4c;hpb=89ea7cefd713fbd44e6838603185a70ace6edf54;p=sage.d.git diff --git a/mjo/interpolation.py b/mjo/interpolation.py index 5d65d15..dc06107 100644 --- a/mjo/interpolation.py +++ b/mjo/interpolation.py @@ -1,5 +1,5 @@ from sage.all import * -from misc import product +product = prod def lagrange_denominator(k, xs): @@ -44,11 +44,15 @@ def lagrange_coefficient(k, x, xs): A symbolic expression of one variable. + SETUP:: + + sage: from mjo.interpolation import lagrange_coefficient + TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] sage: lagrange_coefficient(0, x, xs) - 1/8*(pi - 6*x)*(pi - 2*x)*(pi + 6*x)*x/pi^4 + 1/8*(pi + 6*x)*(pi - 2*x)*(pi - 6*x)*x/pi^4 """ numerator = lagrange_psi(x, xs)/(x - xs[k]) @@ -60,7 +64,7 @@ def lagrange_coefficient(k, x, xs): def lagrange_polynomial(x, xs, ys): """ - Return the Lagrange form of the interpolation polynomial in `x` of + Return the Lagrange form of the interpolating polynomial in `x` at the points (xs[k], ys[k]). INPUT: @@ -75,6 +79,10 @@ def lagrange_polynomial(x, xs, ys): A symbolic expression (polynomial) interpolating each (xs[k], ys[k]). + SETUP:: + + sage: from mjo.interpolation import lagrange_polynomial + TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] @@ -94,12 +102,56 @@ def lagrange_polynomial(x, xs, ys): +def lagrange_interpolate(f, x, xs): + """ + Interpolate the function ``f`` at the points ``xs`` using the + Lagrange form of the interpolating polynomial. + + INPUT: + + - ``f`` -- The function to interpolate. + + - ``x`` -- The independent variable of the resulting polynomial. + + - ``xs`` -- A list of points at which to interpolate ``f``. + + OUTPUT: + + A polynomial in ``x`` which interpolates ``f`` at ``xs``. + + SETUP:: + + sage: from mjo.interpolation import lagrange_interpolate + + EXAMPLES: + + We're exact on polynomials of degree `n` if we use `n+1` points:: + + sage: t = SR.symbol('t', domain='real') + sage: lagrange_interpolate(x^2, t, [-1,0,1]).simplify_rational() + t^2 + + """ + # f should be a function of one variable. + z = f.variables()[0] + # We're really just doing map(f, xs) here; the additional + # gymnastics are to avoid a warning when calling `f` with an + # unnamed argument. + ys = [ f({z: xk}) for xk in xs ] + return lagrange_polynomial(x, xs, ys) + + + def divided_difference_coefficients(xs): """ Assuming some function `f`, compute the coefficients of the divided difference f[xs[0], ..., xs[n]]. - TESTS: + SETUP:: + + sage: from mjo.interpolation import divided_difference_coefficients + + TESTS:: sage: divided_difference_coefficients([0]) [1] @@ -130,6 +182,10 @@ def divided_difference(xs, ys): The (possibly symbolic) divided difference function. + SETUP:: + + sage: from mjo.interpolation import divided_difference + TESTS:: sage: xs = [0] @@ -147,10 +203,10 @@ def divided_difference(xs, ys): We try something entirely symbolic:: - sage: f = function('f', x) + sage: f = function('f')(x) sage: divided_difference([x], [f(x=x)]) f(x) - sage: x1,x2 = var('x1,x2') + sage: x1,x2 = SR.var('x1,x2') sage: divided_difference([x1,x2], [f(x=x1),f(x=x2)]) f(x1)/(x1 - x2) - f(x2)/(x1 - x2) @@ -179,7 +235,11 @@ def newton_polynomial(x, xs, ys): A symbolic expression. - TESTS: + SETUP:: + + sage: from mjo.interpolation import lagrange_polynomial, newton_polynomial + + TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] sage: ys = map(sin, xs) @@ -268,7 +328,11 @@ def hermite_interpolant(x, xs, ys, y_primes): A symbolic expression. - TESTS: + SETUP:: + + sage: from mjo.interpolation import hermite_interpolant + + TESTS:: sage: xs = [ 0, pi/6, pi/2 ] sage: ys = map(sin, xs)