X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Finterpolation.py;h=1d594c38913595c213c7a0ffe2c37d42a658eae7;hb=f6e1d203ea962a391bcb71ffbf8dd380f09fa833;hp=747c680da2f73c777c2f86cf4f20e4cb4300b3a1;hpb=0f5a866077886101e88d89eb24d8902a4a2e508a;p=sage.d.git diff --git a/mjo/interpolation.py b/mjo/interpolation.py index 747c680..1d594c3 100644 --- a/mjo/interpolation.py +++ b/mjo/interpolation.py @@ -1,5 +1,5 @@ from sage.all import * -load('~/.sage/init.sage') +from misc import product def lagrange_coefficient(k, x, xs): """ @@ -38,27 +38,28 @@ def lagrange_coefficient(k, x, xs): -def lagrange_polynomial(f, x, xs): +def lagrange_polynomial(x, xs, ys): """ Return the Lagrange form of the interpolation polynomial in `x` of - `f` at the points `xs`. + at the points (xs[k], ys[k]). INPUT: - - ``f`` - The function to interpolate. - - ``x`` - The independent variable of the resulting polynomial. - ``xs`` - The list of points at which we interpolate `f`. + - ``ys`` - The function values at `xs`. + OUTPUT: - A symbolic function (polynomial) interpolating `f` at `xs`. + A symbolic function (polynomial) interpolating each (xs[k], ys[k]). TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] - sage: L = lagrange_polynomial(sin, x, xs) + sage: ys = map(sin, xs) + sage: L = lagrange_polynomial(x, xs, ys) sage: expected = 27/16*(pi - 6*x)*(pi - 2*x)*(pi + 2*x)*x/pi^4 sage: expected -= 1/8*(pi - 6*x)*(pi - 2*x)*(pi + 6*x)*x/pi^4 sage: expected -= 1/8*(pi - 6*x)*(pi + 2*x)*(pi + 6*x)*x/pi^4 @@ -67,76 +68,92 @@ def lagrange_polynomial(f, x, xs): True """ - ys = [ f(xs[k]) for k in range(0, len(xs)) ] ls = [ lagrange_coefficient(k, x, xs) for k in range(0, len(xs)) ] sigma = sum([ ys[k] * ls[k] for k in range(0, len(xs)) ]) return sigma -def divided_difference(f, xs): + +def divided_difference_coefficients(xs): + """ + Assuming some function `f`, compute the coefficients of the + divided difference f[xs[0], ..., xs[n]]. + + TESTS: + + sage: divided_difference_coefficients([0]) + [1] + sage: divided_difference_coefficients([0, pi]) + [-1/pi, 1/pi] + sage: divided_difference_coefficients([0, pi, 2*pi]) + [1/2/pi^2, -1/pi^2, 1/2/pi^2] + + """ + coeffs = [ product([ (QQ(1) / (xj - xi)) for xi in xs if xi != xj ]) + for xj in xs ] + return coeffs + +def divided_difference(xs, ys): """ - Return the Newton divided difference of `f` at the points - `xs`. Reference: + Return the Newton divided difference of the points (xs[k], + ys[k]). Reference: http://en.wikipedia.org/wiki/Divided_differences INPUT: - - ``f`` -- The function whose divided difference we seek. + - ``xs`` -- The list of x-values. - - ``xs`` -- The list of points at which to compute `f`. + - ``ys`` -- The function values at `xs`. OUTPUT: - The divided difference of `f` at ``xs``. + The (possibly symbolic) divided difference function. TESTS:: - sage: divided_difference(sin, [0]) + sage: xs = [0] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 - sage: divided_difference(sin, [0, pi]) + sage: xs = [0, pi] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 - sage: divided_difference(sin, [0, pi, 2*pi]) + sage: xs = [0, pi, 2*pi] + sage: ys = map(sin, xs) + sage: divided_difference(xs, ys) 0 We try something entirely symbolic:: sage: f = function('f', x) - sage: divided_difference(f, [x]) + sage: divided_difference([x], [f(x=x)]) f(x) sage: x1,x2 = var('x1,x2') - sage: divided_difference(f, [x1,x2]) - (f(x1) - f(x2))/(x1 - x2) + sage: divided_difference([x1,x2], [f(x=x1),f(x=x2)]) + f(x1)/(x1 - x2) - f(x2)/(x1 - x2) """ - if (len(xs) == 1): - # Avoid that goddamned DeprecationWarning when we have a named - # argument but don't know what it is. - if len(f.variables()) == 0: - return f(xs[0]) - else: - v = f.variables()[0] - return f({ v: xs[0] }) - - # Use the recursive definition. - numerator = divided_difference(f, xs[1:]) - numerator -= divided_difference(f, xs[:-1]) - return numerator / (xs[-1] - xs[0]) - - -def newton_polynomial(f, x, xs): + coeffs = divided_difference_coefficients(xs) + v_cs = vector(coeffs) + v_ys = vector(ys) + return v_cs.dot_product(v_ys) + + +def newton_polynomial(x, xs, ys): """ - Return the Newton form of the interpolating polynomial of `f` at - the points `xs` in the variable `x`. + Return the Newton form of the interpolating polynomial of the + points (xs[k], ys[k]) in the variable `x`. INPUT: - - ``f`` -- The function to interpolate. - - ``x`` -- The independent variable to use for the interpolating polynomial. - - ``xs`` -- The list of points at which to interpolate `f`. + - ``xs`` -- The list of x-values. + + - ``ys`` -- The function values at `xs`. OUTPUT: @@ -145,8 +162,9 @@ def newton_polynomial(f, x, xs): TESTS: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] - sage: L = lagrange_polynomial(sin, x, xs) - sage: N = newton_polynomial(sin, x, xs) + sage: ys = map(sin, xs) + sage: L = lagrange_polynomial(x, xs, ys) + sage: N = newton_polynomial(x, xs, ys) sage: bool(N == L) True @@ -156,7 +174,7 @@ def newton_polynomial(f, x, xs): N = SR(0) for k in range(0, degree+1): - term = divided_difference(f, xs[:k+1]) + term = divided_difference(xs[:k+1], ys[:k+1]) term *= product([ x - xk for xk in xs[:k]]) N += term