X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=ef5249bc6abe4f9d4dd62bf0f5de07caa85fed26;hb=64ea775e89b485025775bdf11cc01318e2df37a4;hp=603ef29021d41f53404a84513c2d854f8e4a8c64;hpb=6b8e20c25e2dcdf4790a53664223fdce9c8416e9;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 603ef29..ef5249b 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -101,6 +101,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): Jordan algebras are always power-associative; see for example Faraut and Koranyi, Proposition II.1.2 (ii). + + .. WARNING: + + We have to override this because our superclass uses row vectors + instead of column vectors! We, on the other hand, assume column + vectors everywhere. + + EXAMPLES: + + sage: set_random_seed() + sage: J = eja_ln(5) + sage: x = J.random_element() + sage: x.matrix()*x.vector() == (x**2).vector() + True + """ A = self.parent() if n == 0: @@ -108,7 +123,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): elif n == 1: return self else: - return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + return A.element_class(A, (self.matrix()**(n-1))*self.vector()) def span_of_powers(self): @@ -171,6 +186,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: x.subalgebra_generated_by().is_associative() True + Squaring in the subalgebra should be the same thing as + squaring in the superalgebra:: + + sage: J = eja_ln(5) + sage: x = J.random_element() + sage: u = x.subalgebra_generated_by().random_element() + sage: u.matrix()*u.vector() == (u**2).vector() + True + """ # First get the subspace spanned by the powers of myself... V = self.span_of_powers() @@ -187,6 +211,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # b1 is what we get if we apply that matrix to b1. The # second row of the right multiplication matrix by b1 # is what we get when we apply that matrix to b2... + # + # IMPORTANT: this assumes that all vectors are COLUMN + # vectors, unlike our superclass (which uses row vectors). for b_left in V.basis(): eja_b_left = self.parent()(b_left) # Multiply in the original EJA, but then get the @@ -199,7 +226,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # It's an algebra of polynomials in one element, and EJAs # are power-associative. - return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True) + # + # TODO: choose generator names intelligently. + return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f') def minimal_polynomial(self): @@ -318,6 +347,56 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return elt.is_nilpotent() + def subalgebra_idempotent(self): + """ + Find an idempotent in the associative subalgebra I generate + using Proposition 2.3.5 in Baes. + """ + if self.is_nilpotent(): + raise ValueError("this only works with non-nilpotent elements!") + + V = self.span_of_powers() + J = self.subalgebra_generated_by() + # Mis-design warning: the basis used for span_of_powers() + # and subalgebra_generated_by() must be the same, and in + # the same order! + u = J(V.coordinates(self.vector())) + + # The image of the matrix of left-u^m-multiplication + # will be minimal for some natural number s... + s = 0 + minimal_dim = V.dimension() + for i in xrange(1, V.dimension()): + this_dim = (u**i).matrix().image().dimension() + if this_dim < minimal_dim: + minimal_dim = this_dim + s = i + + # Now minimal_matrix should correspond to the smallest + # non-zero subspace in Baes's (or really, Koecher's) + # proposition. + # + # However, we need to restrict the matrix to work on the + # subspace... or do we? Can't we just solve, knowing that + # A(c) = u^(s+1) should have a solution in the big space, + # too? + # + # Beware, solve_right() means that we're using COLUMN vectors. + # Our FiniteDimensionalAlgebraElement superclass uses rows. + u_next = u**(s+1) + A = u_next.matrix() + c_coordinates = A.solve_right(u_next.vector()) + + # Now c_coordinates is the idempotent we want, but it's in + # the coordinate system of the subalgebra. + # + # We need the basis for J, but as elements of the parent algebra. + # + basis = [self.parent(v) for v in V.basis()] + return self.parent().linear_combination(zip(c_coordinates, basis)) + + + def characteristic_polynomial(self): return self.matrix().characteristic_polynomial()