X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=da3f6001e2d3878f6c5311eb309f8b2a22676a00;hb=9b6acc401eb02e9565db6212698662c9844c4239;hp=0ea9a4debe9c2ad0e33652f50b779fb8fc3838d3;hpb=9c34119f1c650df0a4c2c20ea4723152de80edae;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 0ea9a4d..da3f600 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -71,6 +71,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): """ self._rank = rank self._natural_basis = natural_basis + self._multiplication_table = mult_table fda = super(FiniteDimensionalEuclideanJordanAlgebra, self) fda.__init__(field, mult_table, @@ -86,6 +87,175 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return fmt.format(self.degree(), self.base_ring()) + def _a_regular_element(self): + """ + Guess a regular element. Needed to compute the basis for our + characteristic polynomial coefficients. + """ + gs = self.gens() + z = self.sum( (i+1)*gs[i] for i in range(len(gs)) ) + if not z.is_regular(): + raise ValueError("don't know a regular element") + return z + + + @cached_method + def _charpoly_basis_space(self): + """ + Return the vector space spanned by the basis used in our + characteristic polynomial coefficients. This is used not only to + compute those coefficients, but also any time we need to + evaluate the coefficients (like when we compute the trace or + determinant). + """ + z = self._a_regular_element() + V = z.vector().parent().ambient_vector_space() + V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) ) + b = (V1.basis() + V1.complement().basis()) + return V.span_of_basis(b) + + + @cached_method + def _charpoly_coeff(self, i): + """ + Return the coefficient polynomial "a_{i}" of this algebra's + general characteristic polynomial. + + Having this be a separate cached method lets us compute and + store the trace/determinant (a_{r-1} and a_{0} respectively) + separate from the entire characteristic polynomial. + """ + (A_of_x, x, xr, detA) = self._charpoly_matrix_system() + R = A_of_x.base_ring() + if i >= self.rank(): + # Guaranteed by theory + return R.zero() + + # Danger: the in-place modification is done for performance + # reasons (reconstructing a matrix with huge polynomial + # entries is slow), but I don't know how cached_method works, + # so it's highly possible that we're modifying some global + # list variable by reference, here. In other words, you + # probably shouldn't call this method twice on the same + # algebra, at the same time, in two threads + Ai_orig = A_of_x.column(i) + A_of_x.set_column(i,xr) + numerator = A_of_x.det() + A_of_x.set_column(i,Ai_orig) + + # We're relying on the theory here to ensure that each a_i is + # indeed back in R, and the added negative signs are to make + # the whole charpoly expression sum to zero. + return R(-numerator/detA) + + + @cached_method + def _charpoly_matrix_system(self): + """ + Compute the matrix whose entries A_ij are polynomials in + X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector + corresponding to `x^r` and the determinent of the matrix A = + [A_ij]. In other words, all of the fixed (cachable) data needed + to compute the coefficients of the characteristic polynomial. + """ + r = self.rank() + n = self.dimension() + + # Construct a new algebra over a multivariate polynomial ring... + names = ['X' + str(i) for i in range(1,n+1)] + R = PolynomialRing(self.base_ring(), names) + J = FiniteDimensionalEuclideanJordanAlgebra(R, + self._multiplication_table, + rank=r) + + idmat = identity_matrix(J.base_ring(), n) + + W = self._charpoly_basis_space() + W = W.change_ring(R.fraction_field()) + + # Starting with the standard coordinates x = (X1,X2,...,Xn) + # and then converting the entries to W-coordinates allows us + # to pass in the standard coordinates to the charpoly and get + # back the right answer. Specifically, with x = (X1,X2,...,Xn), + # we have + # + # W.coordinates(x^2) eval'd at (standard z-coords) + # = + # W-coords of (z^2) + # = + # W-coords of (standard coords of x^2 eval'd at std-coords of z) + # + # We want the middle equivalent thing in our matrix, but use + # the first equivalent thing instead so that we can pass in + # standard coordinates. + x = J(vector(R, R.gens())) + l1 = [column_matrix(W.coordinates((x**k).vector())) for k in range(r)] + l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)] + A_of_x = block_matrix(R, 1, n, (l1 + l2)) + xr = W.coordinates((x**r).vector()) + return (A_of_x, x, xr, A_of_x.det()) + + + @cached_method + def characteristic_polynomial(self): + """ + + .. WARNING:: + + This implementation doesn't guarantee that the polynomial + denominator in the coefficients is not identically zero, so + theoretically it could crash. The way that this is handled + in e.g. Faraut and Koranyi is to use a basis that guarantees + the denominator is non-zero. But, doing so requires knowledge + of at least one regular element, and we don't even know how + to do that. The trade-off is that, if we use the standard basis, + the resulting polynomial will accept the "usual" coordinates. In + other words, we don't have to do a change of basis before e.g. + computing the trace or determinant. + + EXAMPLES: + + The characteristic polynomial in the spin algebra is given in + Alizadeh, Example 11.11:: + + sage: J = JordanSpinEJA(3) + sage: p = J.characteristic_polynomial(); p + X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2 + sage: xvec = J.one().vector() + sage: p(*xvec) + t^2 - 2*t + 1 + + """ + r = self.rank() + n = self.dimension() + + # The list of coefficient polynomials a_1, a_2, ..., a_n. + a = [ self._charpoly_coeff(i) for i in range(n) ] + + # We go to a bit of trouble here to reorder the + # indeterminates, so that it's easier to evaluate the + # characteristic polynomial at x's coordinates and get back + # something in terms of t, which is what we want. + R = a[0].parent() + S = PolynomialRing(self.base_ring(),'t') + t = S.gen(0) + S = PolynomialRing(S, R.variable_names()) + t = S(t) + + # Note: all entries past the rth should be zero. The + # coefficient of the highest power (x^r) is 1, but it doesn't + # appear in the solution vector which contains coefficients + # for the other powers (to make them sum to x^r). + if (r < n): + a[r] = 1 # corresponds to x^r + else: + # When the rank is equal to the dimension, trying to + # assign a[r] goes out-of-bounds. + a.append(1) # corresponds to x^r + + return sum( a[k]*(t**k) for k in range(len(a)) ) + + def inner_product(self, x, y): """ The inner product associated with this Euclidean Jordan algebra. @@ -266,19 +436,82 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return A( (self.operator_matrix()**(n-1))*self.vector() ) + def apply_univariate_polynomial(self, p): + """ + Apply the univariate polynomial ``p`` to this element. + + A priori, SageMath won't allow us to apply a univariate + polynomial to an element of an EJA, because we don't know + that EJAs are rings (they are usually not associative). Of + course, we know that EJAs are power-associative, so the + operation is ultimately kosher. This function sidesteps + the CAS to get the answer we want and expect. + + EXAMPLES:: + + sage: R = PolynomialRing(QQ, 't') + sage: t = R.gen(0) + sage: p = t^4 - t^3 + 5*t - 2 + sage: J = RealCartesianProductEJA(5) + sage: J.one().apply_univariate_polynomial(p) == 3*J.one() + True + + TESTS: + + We should always get back an element of the algebra:: + + sage: set_random_seed() + sage: p = PolynomialRing(QQ, 't').random_element() + sage: J = random_eja() + sage: x = J.random_element() + sage: x.apply_univariate_polynomial(p) in J + True + + """ + if len(p.variables()) > 1: + raise ValueError("not a univariate polynomial") + P = self.parent() + R = P.base_ring() + # Convert the coeficcients to the parent's base ring, + # because a priori they might live in an (unnecessarily) + # larger ring for which P.sum() would fail below. + cs = [ R(c) for c in p.coefficients(sparse=False) ] + return P.sum( cs[k]*(self**k) for k in range(len(cs)) ) + + def characteristic_polynomial(self): """ - Return my characteristic polynomial (if I'm a regular - element). + Return the characteristic polynomial of this element. + + EXAMPLES: + + The rank of `R^3` is three, and the minimal polynomial of + the identity element is `(t-1)` from which it follows that + the characteristic polynomial should be `(t-1)^3`:: + + sage: J = RealCartesianProductEJA(3) + sage: J.one().characteristic_polynomial() + t^3 - 3*t^2 + 3*t - 1 + + Likewise, the characteristic of the zero element in the + rank-three algebra `R^{n}` should be `t^{3}`:: + + sage: J = RealCartesianProductEJA(3) + sage: J.zero().characteristic_polynomial() + t^3 + + The characteristic polynomial of an element should evaluate + to zero on that element:: + + sage: set_random_seed() + sage: x = RealCartesianProductEJA(3).random_element() + sage: p = x.characteristic_polynomial() + sage: x.apply_univariate_polynomial(p) + 0 - Eventually this should be implemented in terms of the parent - algebra's characteristic polynomial that works for ALL - elements. """ - if self.is_regular(): - return self.minimal_polynomial() - else: - raise NotImplementedError('irregular element') + p = self.parent().characteristic_polynomial() + return p(*self.vector()) def inner_product(self, other): @@ -388,22 +621,37 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: J = JordanSpinEJA(2) sage: e0,e1 = J.gens() - sage: x = e0 + e1 + sage: x = sum( J.gens() ) sage: x.det() 0 + + :: + sage: J = JordanSpinEJA(3) sage: e0,e1,e2 = J.gens() - sage: x = e0 + e1 + e2 + sage: x = sum( J.gens() ) sage: x.det() -1 + TESTS: + + An element is invertible if and only if its determinant is + non-zero:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: x.is_invertible() == (x.det() != 0) + True + """ - cs = self.characteristic_polynomial().coefficients(sparse=False) - r = len(cs) - 1 - if r >= 0: - return cs[0] * (-1)**r - else: - raise ValueError('charpoly had no coefficients') + P = self.parent() + r = P.rank() + p = P._charpoly_coeff(0) + # The _charpoly_coeff function already adds the factor of + # -1 to ensure that _charpoly_coeff(0) is really what + # appears in front of t^{0} in the charpoly. However, + # we want (-1)^r times THAT for the determinant. + return ((-1)**r)*p(*self.vector()) def inverse(self): @@ -442,28 +690,22 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: J.one().inverse() == J.one() True - If an element has an inverse, it acts like one. TODO: this - can be a lot less ugly once ``is_invertible`` doesn't crash - on irregular elements:: + If an element has an inverse, it acts like one:: sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() - sage: try: - ....: x.inverse()*x == J.one() - ....: except: - ....: True + sage: (not x.is_invertible()) or (x.inverse()*x == J.one()) True """ + if not self.is_invertible(): + raise ValueError("element not invertible") + if self.parent().is_associative(): elt = FiniteDimensionalAlgebraElement(self.parent(), self) - return elt.inverse() - - # TODO: we can do better once the call to is_invertible() - # doesn't crash on irregular elements. - #if not self.is_invertible(): - # raise ValueError('element is not invertible') + # elt is in the right coordinates, but has the wrong class. + return self.parent()(elt.inverse().vector()) # We do this a little different than the usual recursive # call to a finite-dimensional algebra element, because we @@ -626,6 +868,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): def minimal_polynomial(self): """ + Return the minimal polynomial of this element, + as a function of the variable `t`. + ALGORITHM: We restrict ourselves to the associative subalgebra @@ -633,14 +878,20 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): polynomial of this element's operator matrix (in that subalgebra). This works by Baes Proposition 2.3.16. - EXAMPLES:: + TESTS: + + The minimal polynomial of the identity and zero elements are + always the same:: sage: set_random_seed() - sage: x = random_eja().random_element() - sage: x.degree() == x.minimal_polynomial().degree() - True + sage: J = random_eja() + sage: J.one().minimal_polynomial() + t - 1 + sage: J.zero().minimal_polynomial() + t - :: + The degree of an element is (by one definition) the degree + of its minimal polynomial:: sage: set_random_seed() sage: x = random_eja().random_element() @@ -661,11 +912,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: y0 = y.vector()[0] sage: y_bar = y.vector()[1:] sage: actual = y.minimal_polynomial() - sage: x = SR.symbol('x', domain='real') - sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2) + sage: t = PolynomialRing(J.base_ring(),'t').gen(0) + sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2) sage: bool(actual == expected) True + The minimal polynomial should always kill its element:: + + sage: set_random_seed() + sage: x = random_eja().random_element() + sage: p = x.minimal_polynomial() + sage: x.apply_univariate_polynomial(p) + 0 + """ V = self.span_of_powers() assoc_subalg = self.subalgebra_generated_by() @@ -673,7 +932,11 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # and subalgebra_generated_by() must be the same, and in # the same order! elt = assoc_subalg(V.coordinates(self.vector())) - return elt.operator_matrix().minimal_polynomial() + + # We get back a symbolic polynomial in 'x' but want a real + # polynomial in 't'. + p_of_x = elt.operator_matrix().minimal_polynomial() + return p_of_x.change_variable_name('t') def natural_representation(self): @@ -823,38 +1086,77 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: J = random_eja() sage: x = J.random_element() sage: y = J.random_element() + sage: Lx = x.operator_matrix() + sage: Lxx = (x*x).operator_matrix() + sage: Qx = x.quadratic_representation() + sage: Qy = y.quadratic_representation() + sage: Qxy = x.quadratic_representation(y) + sage: Qex = J.one().quadratic_representation(x) + sage: n = ZZ.random_element(10) + sage: Qxn = (x^n).quadratic_representation() Property 1: - sage: actual = x.quadratic_representation(y) - sage: expected = ( (x+y).quadratic_representation() - ....: -x.quadratic_representation() - ....: -y.quadratic_representation() ) / 2 - sage: actual == expected + sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy True Property 2: sage: alpha = QQ.random_element() - sage: actual = (alpha*x).quadratic_representation() - sage: expected = (alpha^2)*x.quadratic_representation() - sage: actual == expected + sage: (alpha*x).quadratic_representation() == (alpha^2)*Qx + True + + Property 3: + + sage: not x.is_invertible() or ( + ....: Qx*x.inverse().vector() == x.vector() ) + True + + sage: not x.is_invertible() or ( + ....: Qx.inverse() + ....: == + ....: x.inverse().quadratic_representation() ) + True + + sage: Qxy*(J.one().vector()) == (x*y).vector() + True + + Property 4: + + sage: not x.is_invertible() or ( + ....: x.quadratic_representation(x.inverse())*Qx + ....: == Qx*x.quadratic_representation(x.inverse()) ) + True + + sage: not x.is_invertible() or ( + ....: x.quadratic_representation(x.inverse())*Qx + ....: == + ....: 2*x.operator_matrix()*Qex - Qx ) + True + + sage: 2*x.operator_matrix()*Qex - Qx == Lxx True Property 5: - sage: Qy = y.quadratic_representation() - sage: actual = J(Qy*x.vector()).quadratic_representation() - sage: expected = Qy*x.quadratic_representation()*Qy - sage: actual == expected + sage: J(Qy*x.vector()).quadratic_representation() == Qy*Qx*Qy True Property 6: - sage: k = ZZ.random_element(1,10) - sage: actual = (x^k).quadratic_representation() - sage: expected = (x.quadratic_representation())^k - sage: actual == expected + sage: Qxn == (Qx)^n + True + + Property 7: + + sage: not x.is_invertible() or ( + ....: Qx*x.inverse().operator_matrix() == Lx ) + True + + Property 8: + + sage: not x.operator_commutes_with(y) or ( + ....: J(Qx*y.vector())^n == J(Qxn*(y^n).vector()) ) True """ @@ -876,7 +1178,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # The dimension of the subalgebra can't be greater than # the big algebra, so just put everything into a list # and let span() get rid of the excess. - V = self.vector().parent() + # + # We do the extra ambient_vector_space() in case we're messing + # with polynomials and the direct parent is a module. + V = self.vector().parent().ambient_vector_space() return V.span( (self**d).vector() for d in xrange(V.dimension()) ) @@ -945,12 +1250,11 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): TESTS:: sage: set_random_seed() - sage: J = RealCartesianProductEJA(5) - sage: c = J.random_element().subalgebra_idempotent() - sage: c^2 == c - True - sage: J = JordanSpinEJA(5) - sage: c = J.random_element().subalgebra_idempotent() + sage: J = random_eja() + sage: x = J.random_element() + sage: while x.is_nilpotent(): + ....: x = J.random_element() + sage: c = x.subalgebra_idempotent() sage: c^2 == c True @@ -1006,22 +1310,80 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): EXAMPLES:: sage: J = JordanSpinEJA(3) - sage: e0,e1,e2 = J.gens() - sage: x = e0 + e1 + e2 + sage: x = sum(J.gens()) sage: x.trace() 2 + :: + + sage: J = RealCartesianProductEJA(5) + sage: J.one().trace() + 5 + + TESTS: + + The trace of an element is a real number:: + + sage: set_random_seed() + sage: J = random_eja() + sage: J.random_element().trace() in J.base_ring() + True + """ - cs = self.characteristic_polynomial().coefficients(sparse=False) - if len(cs) >= 2: - return -1*cs[-2] - else: - raise ValueError('charpoly had fewer than 2 coefficients') + P = self.parent() + r = P.rank() + p = P._charpoly_coeff(r-1) + # The _charpoly_coeff function already adds the factor of + # -1 to ensure that _charpoly_coeff(r-1) is really what + # appears in front of t^{r-1} in the charpoly. However, + # we want the negative of THAT for the trace. + return -p(*self.vector()) def trace_inner_product(self, other): """ Return the trace inner product of myself and ``other``. + + TESTS: + + The trace inner product is commutative:: + + sage: set_random_seed() + sage: J = random_eja() + sage: x = J.random_element(); y = J.random_element() + sage: x.trace_inner_product(y) == y.trace_inner_product(x) + True + + The trace inner product is bilinear:: + + sage: set_random_seed() + sage: J = random_eja() + sage: x = J.random_element() + sage: y = J.random_element() + sage: z = J.random_element() + sage: a = QQ.random_element(); + sage: actual = (a*(x+z)).trace_inner_product(y) + sage: expected = ( a*x.trace_inner_product(y) + + ....: a*z.trace_inner_product(y) ) + sage: actual == expected + True + sage: actual = x.trace_inner_product(a*(y+z)) + sage: expected = ( a*x.trace_inner_product(y) + + ....: a*x.trace_inner_product(z) ) + sage: actual == expected + True + + The trace inner product satisfies the compatibility + condition in the definition of a Euclidean Jordan algebra:: + + sage: set_random_seed() + sage: J = random_eja() + sage: x = J.random_element() + sage: y = J.random_element() + sage: z = J.random_element() + sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z) + True + """ if not other in self.parent(): raise TypeError("'other' must live in the same algebra") @@ -1107,12 +1469,17 @@ def random_eja(): Euclidean Jordan algebra of degree... """ - n = ZZ.random_element(1,5) - constructor = choice([RealCartesianProductEJA, - JordanSpinEJA, - RealSymmetricEJA, - ComplexHermitianEJA, - QuaternionHermitianEJA]) + + # The max_n component lets us choose different upper bounds on the + # value "n" that gets passed to the constructor. This is needed + # because e.g. R^{10} is reasonable to test, while the Hermitian + # 10-by-10 quaternion matrices are not. + (constructor, max_n) = choice([(RealCartesianProductEJA, 6), + (JordanSpinEJA, 6), + (RealSymmetricEJA, 5), + (ComplexHermitianEJA, 4), + (QuaternionHermitianEJA, 3)]) + n = ZZ.random_element(1, max_n) return constructor(n, field=QQ)