X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=d460aa029e777f137e64d6028f34a2b55cce6101;hb=50ea939ce86a7b67f3dc98ba2b3470b9d0dceebd;hp=8487e0ecea385d00f45c176bdc43b45d31d617ff;hpb=0898205b7a8dc3a44e9fddd371814be6c94107bb;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 8487e0e..d460aa0 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -108,8 +108,86 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return self.span_of_powers().dimension() + def subalgebra_generated_by(self): + """ + Return the subalgebra of the parent EJA generated by this element. + """ + # First get the subspace spanned by the powers of myself... + V = self.span_of_powers() + F = self.base_ring() + + # Now figure out the entries of the right-multiplication + # matrix for the successive basis elements b0, b1,... of + # that subspace. + mats = [] + for b_right in V.basis(): + eja_b_right = self.parent()(b_right) + b_right_rows = [] + # The first row of the right-multiplication matrix by + # b1 is what we get if we apply that matrix to b1. The + # second row of the right multiplication matrix by b1 + # is what we get when we apply that matrix to b2... + for b_left in V.basis(): + eja_b_left = self.parent()(b_left) + # Multiply in the original EJA, but then get the + # coordinates from the subalgebra in terms of its + # basis. + this_row = V.coordinates((eja_b_left*eja_b_right).vector()) + b_right_rows.append(this_row) + b_right_matrix = matrix(F, b_right_rows) + mats.append(b_right_matrix) + + return FiniteDimensionalEuclideanJordanAlgebra(F, mats) + + def minimal_polynomial(self): - return self.matrix().minimal_polynomial() + """ + EXAMPLES:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,10).abs() + sage: J = eja_rn(n) + sage: x = J.random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + :: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,10).abs() + sage: J = eja_ln(n) + sage: x = J.random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + The minimal polynomial and the characteristic polynomial coincide + and are known (see Alizadeh, Example 11.11) for all elements of + the spin factor algebra that aren't scalar multiples of the + identity:: + + sage: set_random_seed() + sage: n = ZZ.random_element(2,10).abs() + sage: J = eja_ln(n) + sage: y = J.random_element() + sage: while y == y.coefficient(0)*J.one(): + ....: y = J.random_element() + sage: y0 = y.vector()[0] + sage: y_bar = y.vector()[1:] + sage: actual = y.minimal_polynomial() + sage: x = SR.symbol('x', domain='real') + sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2) + sage: bool(actual == expected) + True + + """ + V = self.span_of_powers() + assoc_subalg = self.subalgebra_generated_by() + # Mis-design warning: the basis used for span_of_powers() + # and subalgebra_generated_by() must be the same, and in + # the same order! + subalg_self = assoc_subalg(V.coordinates(self.vector())) + return subalg_self.matrix().minimal_polynomial() + def characteristic_polynomial(self): return self.matrix().characteristic_polynomial()