X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=d460aa029e777f137e64d6028f34a2b55cce6101;hb=50ea939ce86a7b67f3dc98ba2b3470b9d0dceebd;hp=52e1383383cac83a8fa91e3f63c39c8795d8b533;hpb=bb8418eb800cae28a844f40b5f04480d64b2250b;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 52e1383..d460aa0 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -39,6 +39,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): class Element(FiniteDimensionalAlgebraElement): """ An element of a Euclidean Jordan algebra. + + Since EJAs are commutative, the "right multiplication" matrix is + also the left multiplication matrix and must be symmetric:: + + sage: set_random_seed() + sage: J = eja_ln(5) + sage: J.random_element().matrix().is_symmetric() + True + """ def __pow__(self, n): @@ -57,6 +66,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + def span_of_powers(self): + """ + Return the vector space spanned by successive powers of + this element. + """ + # The dimension of the subalgebra can't be greater than + # the big algebra, so just put everything into a list + # and let span() get rid of the excess. + V = self.vector().parent() + return V.span( (self**d).vector() for d in xrange(V.dimension()) ) + + def degree(self): """ Compute the degree of this element the straightforward way @@ -73,17 +94,100 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: (e0 - e1).degree() 2 + In the spin factor algebra (of rank two), all elements that + aren't multiples of the identity are regular:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,10).abs() + sage: J = eja_ln(n) + sage: x = J.random_element() + sage: x == x.coefficient(0)*J.one() or x.degree() == 2 + True + """ - d = 0 - V = self.vector().parent() - vectors = [(self**d).vector()] - while V.span(vectors).dimension() > d: - d += 1 - vectors.append((self**d).vector()) - return d + return self.span_of_powers().dimension() + + + def subalgebra_generated_by(self): + """ + Return the subalgebra of the parent EJA generated by this element. + """ + # First get the subspace spanned by the powers of myself... + V = self.span_of_powers() + F = self.base_ring() + + # Now figure out the entries of the right-multiplication + # matrix for the successive basis elements b0, b1,... of + # that subspace. + mats = [] + for b_right in V.basis(): + eja_b_right = self.parent()(b_right) + b_right_rows = [] + # The first row of the right-multiplication matrix by + # b1 is what we get if we apply that matrix to b1. The + # second row of the right multiplication matrix by b1 + # is what we get when we apply that matrix to b2... + for b_left in V.basis(): + eja_b_left = self.parent()(b_left) + # Multiply in the original EJA, but then get the + # coordinates from the subalgebra in terms of its + # basis. + this_row = V.coordinates((eja_b_left*eja_b_right).vector()) + b_right_rows.append(this_row) + b_right_matrix = matrix(F, b_right_rows) + mats.append(b_right_matrix) + + return FiniteDimensionalEuclideanJordanAlgebra(F, mats) + def minimal_polynomial(self): - return self.matrix().minimal_polynomial() + """ + EXAMPLES:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,10).abs() + sage: J = eja_rn(n) + sage: x = J.random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + :: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,10).abs() + sage: J = eja_ln(n) + sage: x = J.random_element() + sage: x.degree() == x.minimal_polynomial().degree() + True + + The minimal polynomial and the characteristic polynomial coincide + and are known (see Alizadeh, Example 11.11) for all elements of + the spin factor algebra that aren't scalar multiples of the + identity:: + + sage: set_random_seed() + sage: n = ZZ.random_element(2,10).abs() + sage: J = eja_ln(n) + sage: y = J.random_element() + sage: while y == y.coefficient(0)*J.one(): + ....: y = J.random_element() + sage: y0 = y.vector()[0] + sage: y_bar = y.vector()[1:] + sage: actual = y.minimal_polynomial() + sage: x = SR.symbol('x', domain='real') + sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2) + sage: bool(actual == expected) + True + + """ + V = self.span_of_powers() + assoc_subalg = self.subalgebra_generated_by() + # Mis-design warning: the basis used for span_of_powers() + # and subalgebra_generated_by() must be the same, and in + # the same order! + subalg_self = assoc_subalg(V.coordinates(self.vector())) + return subalg_self.matrix().minimal_polynomial() + def characteristic_polynomial(self): return self.matrix().characteristic_polynomial() @@ -122,9 +226,6 @@ def eja_rn(dimension, field=QQ): Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i)) for i in xrange(dimension) ] - # Assuming associativity is wrong here, but it works to - # temporarily trick the Jordan algebra constructor into using the - # multiplication table. return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)