X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=ce6f6e55e18b28aabea82c9118758c1dab061c28;hb=3cee3d24af1c7606b4c2f30c16a7f6f3e51fd1bd;hp=5ccf2f29fd480f4a499d55fc3d9dad85942dc6f4;hpb=99a85a92ed375722e51f7842dcc8d370b134629b;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 5ccf2f2..ce6f6e5 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -5,12 +5,121 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from sage.all import * +from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra +from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement + +class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): + @staticmethod + def __classcall__(cls, field, mult_table, names='e', category=None): + fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls) + return fda.__classcall_private__(cls, + field, + mult_table, + names, + category) + + def __init__(self, field, mult_table, names='e', category=None): + fda = super(FiniteDimensionalEuclideanJordanAlgebra, self) + fda.__init__(field, mult_table, names, category) + + + def _repr_(self): + """ + Return a string representation of ``self``. + """ + return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring()) + + def rank(self): + """ + Return the rank of this EJA. + """ + raise NotImplementedError + + + class Element(FiniteDimensionalAlgebraElement): + """ + An element of a Euclidean Jordan algebra. + """ + + def __pow__(self, n): + """ + Return ``self`` raised to the power ``n``. + + Jordan algebras are always power-associative; see for + example Faraut and Koranyi, Proposition II.1.2 (ii). + """ + A = self.parent() + if n == 0: + return A.one() + elif n == 1: + return self + else: + return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + + + def span_of_powers(self): + """ + Return the vector space spanned by successive powers of + this element. + """ + # The dimension of the subalgebra can't be greater than + # the big algebra, so just put everything into a list + # and let span() get rid of the excess. + V = self.vector().parent() + return V.span( (self**d).vector() for d in xrange(V.dimension()) ) + + + def degree(self): + """ + Compute the degree of this element the straightforward way + according to the definition; by appending powers to a list + and figuring out its dimension (that is, whether or not + they're linearly dependent). + + EXAMPLES:: + + sage: J = eja_ln(4) + sage: J.one().degree() + 1 + sage: e0,e1,e2,e3 = J.gens() + sage: (e0 - e1).degree() + 2 + + """ + return self.span_of_powers().dimension() + + + def minimal_polynomial(self): + return self.matrix().minimal_polynomial() + + def characteristic_polynomial(self): + return self.matrix().characteristic_polynomial() + def eja_rn(dimension, field=QQ): """ Return the Euclidean Jordan Algebra corresponding to the set `R^n` under the Hadamard product. + + EXAMPLES: + + This multiplication table can be verified by hand:: + + sage: J = eja_rn(3) + sage: e0,e1,e2 = J.gens() + sage: e0*e0 + e0 + sage: e0*e1 + 0 + sage: e0*e2 + 0 + sage: e1*e1 + e1 + sage: e1*e2 + 0 + sage: e2*e2 + e2 + """ # The FiniteDimensionalAlgebra constructor takes a list of # matrices, the ith representing right multiplication by the ith @@ -19,5 +128,55 @@ def eja_rn(dimension, field=QQ): # component of x; and likewise for the ith basis element e_i. Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i)) for i in xrange(dimension) ] - A = FiniteDimensionalAlgebra(QQ,Qs,assume_associative=True) - return JordanAlgebra(A) + + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs) + + +def eja_ln(dimension, field=QQ): + """ + Return the Jordan algebra corresponding to the Lorentz "ice cream" + cone of the given ``dimension``. + + EXAMPLES: + + This multiplication table can be verified by hand:: + + sage: J = eja_ln(4) + sage: e0,e1,e2,e3 = J.gens() + sage: e0*e0 + e0 + sage: e0*e1 + e1 + sage: e0*e2 + e2 + sage: e0*e3 + e3 + sage: e1*e2 + 0 + sage: e1*e3 + 0 + sage: e2*e3 + 0 + + In one dimension, this is the reals under multiplication:: + + sage: J1 = eja_ln(1) + sage: J2 = eja_rn(1) + sage: J1 == J2 + True + + """ + Qs = [] + id_matrix = identity_matrix(field,dimension) + for i in xrange(dimension): + ei = id_matrix.column(i) + Qi = zero_matrix(field,dimension) + Qi.set_row(0, ei) + Qi.set_column(0, ei) + Qi += diagonal_matrix(dimension, [ei[0]]*dimension) + # The addition of the diagonal matrix adds an extra ei[0] in the + # upper-left corner of the matrix. + Qi[0,0] = Qi[0,0] * ~field(2) + Qs.append(Qi) + + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)