X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=a73cfaf689c7206f7644e10021006e4bcf6f08f7;hb=d284bd1283830bfa1417b30c592b529a1cd1f47b;hp=ca344edc709352dea2d1940a7646e058066d4b8d;hpb=388d1430380c72c14da47bfab73f7365fa0977f7;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index ca344ed..a73cfaf 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -244,6 +244,24 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: J(x).inner_product(J(y)) 32 + The inner product on `S^n` is ` = trace(X*Y)`, where + multiplication is the usual matrix multiplication in `S^n`, + so the inner product of the identity matrix with itself + should be the `n`:: + + sage: J = RealSymmetricSimpleEJA(3) + sage: J.one().inner_product(J.one()) + 3 + + Likewise, the inner product on `C^n` is ` = + Re(trace(X*Y))`, where we must necessarily take the real + part because the product of Hermitian matrices may not be + Hermitian:: + + sage: J = ComplexHermitianSimpleEJA(3) + sage: J.one().inner_product(J.one()) + 3 + TESTS: Ensure that we can always compute an inner product, and that @@ -941,13 +959,10 @@ def eja_rn(dimension, field=QQ): Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i)) for i in xrange(dimension) ] - # The usual inner product on R^n. - ip = lambda x, y: x.vector().inner_product(y.vector()) - return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=dimension, - inner_product=ip) + inner_product=_usual_ip) @@ -1161,14 +1176,26 @@ def _unembed_complex_matrix(M): for j in xrange(n/2): submat = M[2*k:2*k+2,2*j:2*j+2] if submat[0,0] != submat[1,1]: - raise ArgumentError('bad real submatrix') + raise ValueError('bad real submatrix') if submat[0,1] != -submat[1,0]: - raise ArgumentError('bad imag submatrix') + raise ValueError('bad imag submatrix') z = submat[0,0] + submat[1,0]*i elements.append(z) return matrix(F, n/2, elements) +# The usual inner product on R^n. +def _usual_ip(x,y): + return x.vector().inner_product(y.vector()) + +# The inner product used for the real symmetric simple EJA. +# We keep it as a separate function because e.g. the complex +# algebra uses the same inner product, except divided by 2. +def _matrix_ip(X,Y): + X_mat = X.natural_representation() + Y_mat = Y.natural_representation() + return (X_mat*Y_mat).trace() + def RealSymmetricSimpleEJA(n, field=QQ): """ @@ -1204,7 +1231,8 @@ def RealSymmetricSimpleEJA(n, field=QQ): return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n, - natural_basis=T) + natural_basis=T, + inner_product=_matrix_ip) def ComplexHermitianSimpleEJA(n, field=QQ): @@ -1227,10 +1255,21 @@ def ComplexHermitianSimpleEJA(n, field=QQ): """ S = _complex_hermitian_basis(n) (Qs, T) = _multiplication_table_from_matrix_basis(S) + + # Since a+bi on the diagonal is represented as + # + # a + bi = [ a b ] + # [ -b a ], + # + # we'll double-count the "a" entries if we take the trace of + # the embedding. + ip = lambda X,Y: _matrix_ip(X,Y)/2 + return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n, - natural_basis=T) + natural_basis=T, + inner_product=ip) def QuaternionHermitianSimpleEJA(n): @@ -1277,6 +1316,13 @@ def JordanSpinSimpleEJA(n, field=QQ): sage: e2*e3 0 + In one dimension, this is the reals under multiplication:: + + sage: J1 = JordanSpinSimpleEJA(1) + sage: J2 = eja_rn(1) + sage: J1 == J2 + True + """ Qs = [] id_matrix = identity_matrix(field, n) @@ -1291,13 +1337,10 @@ def JordanSpinSimpleEJA(n, field=QQ): Qi[0,0] = Qi[0,0] * ~field(2) Qs.append(Qi) - # The usual inner product on R^n. - ip = lambda x, y: x.vector().inner_product(y.vector()) - # The rank of the spin factor algebra is two, UNLESS we're in a # one-dimensional ambient space (the rank is bounded by the # ambient dimension). return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2), - inner_product=ip) + inner_product=_usual_ip)