X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=87a0ca0592b8103ec3410fef57a1134f26a0bf9b;hb=80ce7379dd56aee7cc622b7218823137e9848a47;hp=c83c78056a2774a01400fbb76381a5b9d7352c15;hpb=4f9b2bd453c2895f1798139f82926b7ac487492d;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index c83c780..87a0ca0 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -323,7 +323,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return elt.minimal_polynomial() - def quadratic_representation(self): + def quadratic_representation(self, other=None): """ Return the quadratic representation of this element. @@ -332,6 +332,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): The explicit form in the spin factor algebra is given by Alizadeh's Example 11.12:: + sage: set_random_seed() sage: n = ZZ.random_element(1,10).abs() sage: J = JordanSpinSimpleEJA(n) sage: x = J.random_element() @@ -348,8 +349,55 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: Q == x.quadratic_representation() True + Test all of the properties from Theorem 11.2 in Alizadeh:: + + sage: set_random_seed() + sage: J = random_eja() + sage: x = J.random_element() + sage: y = J.random_element() + + Property 1: + + sage: actual = x.quadratic_representation(y) + sage: expected = ( (x+y).quadratic_representation() + ....: -x.quadratic_representation() + ....: -y.quadratic_representation() ) / 2 + sage: actual == expected + True + + Property 2: + + sage: alpha = QQ.random_element() + sage: actual = (alpha*x).quadratic_representation() + sage: expected = (alpha^2)*x.quadratic_representation() + sage: actual == expected + True + + Property 5: + + sage: Qy = y.quadratic_representation() + sage: actual = J(Qy*x.vector()).quadratic_representation() + sage: expected = Qy*x.quadratic_representation()*Qy + sage: actual == expected + True + + Property 6: + + sage: k = ZZ.random_element(1,10).abs() + sage: actual = (x^k).quadratic_representation() + sage: expected = (x.quadratic_representation())^k + sage: actual == expected + True + """ - return 2*(self.matrix()**2) - (self**2).matrix() + if other is None: + other=self + elif not other in self.parent(): + raise ArgumentError("'other' must live in the same algebra") + + return ( self.matrix()*other.matrix() + + other.matrix()*self.matrix() + - (self*other).matrix() ) def span_of_powers(self): @@ -604,6 +652,43 @@ def _real_symmetric_basis(n, field=QQ): return S +def _complex_hermitian_basis(n, field=QQ): + """ + Returns a basis for the space of complex Hermitian n-by-n matrices. + + TESTS:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5).abs() + sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) ) + True + + """ + F = QuadraticField(-1, 'I') + I = F.gen() + + # This is like the symmetric case, but we need to be careful: + # + # * We want conjugate-symmetry, not just symmetry. + # * The diagonal will (as a result) be real. + # + S = [] + for i in xrange(n): + for j in xrange(i+1): + Eij = matrix(field, n, lambda k,l: k==i and l==j) + if i == j: + Sij = _embed_complex_matrix(Eij) + S.append(Sij) + else: + # Beware, orthogonal but not normalized! The second one + # has a minus because it's conjugated. + Sij_real = _embed_complex_matrix(Eij + Eij.transpose()) + S.append(Sij_real) + Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose()) + S.append(Sij_imag) + return S + + def _multiplication_table_from_matrix_basis(basis): """ At least three of the five simple Euclidean Jordan algebras have the @@ -767,20 +852,25 @@ def ComplexHermitianSimpleEJA(n, field=QQ): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, - and the real-part-of-trace inner product. It has dimension `n^2 over + and the real-part-of-trace inner product. It has dimension `n^2` over the reals. + + TESTS: + + The degree of this algebra is `n^2`:: + + sage: set_random_seed() + sage: n = ZZ.random_element(1,5).abs() + sage: J = ComplexHermitianSimpleEJA(n) + sage: J.degree() == n^2 + True + """ - F = QuadraticField(-1, 'i') - i = F.gen() - S = _real_symmetric_basis(n, field=F) - T = [] - for s in S: - T.append(s) - T.append(i*s) - embed_T = [ _embed_complex_matrix(t) for t in T ] - Qs = _multiplication_table_from_matrix_basis(embed_T) + S = _complex_hermitian_basis(n) + Qs = _multiplication_table_from_matrix_basis(S) return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n) + def QuaternionHermitianSimpleEJA(n): """ The rank-n simple EJA consisting of self-adjoint n-by-n quaternion