X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=835f76337f9449612bcd113de950afd011317107;hb=5fcc3b1bdec67eec2d76cc39c79a25af00830e30;hp=2ec45cf537661f359ef6cf4e34c578c238f80b31;hpb=b479f3bb0d3aae8c598a6ec6459688c4be3202af;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 2ec45cf..835f763 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -101,6 +101,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): Jordan algebras are always power-associative; see for example Faraut and Koranyi, Proposition II.1.2 (ii). + + .. WARNING: + + We have to override this because our superclass uses row vectors + instead of column vectors! We, on the other hand, assume column + vectors everywhere. + + EXAMPLES: + + sage: set_random_seed() + sage: J = eja_ln(5) + sage: x = J.random_element() + sage: x.matrix()*x.vector() == (x**2).vector() + True + """ A = self.parent() if n == 0: @@ -108,7 +123,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): elif n == 1: return self else: - return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + return A.element_class(A, (self.matrix()**(n-1))*self.vector()) def span_of_powers(self): @@ -153,6 +168,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return self.span_of_powers().dimension() + def matrix(self): + """ + Return the matrix that represents left- (or right-) + multiplication by this element in the parent algebra. + + We have to override this because the superclass method + returns a matrix that acts on row vectors (that is, on + the right). + """ + fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self) + return fda_elt.matrix().transpose() + + def subalgebra_generated_by(self): """ Return the associative subalgebra of the parent EJA generated @@ -171,6 +199,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): sage: x.subalgebra_generated_by().is_associative() True + Squaring in the subalgebra should be the same thing as + squaring in the superalgebra:: + + sage: J = eja_ln(5) + sage: x = J.random_element() + sage: u = x.subalgebra_generated_by().random_element() + sage: u.matrix()*u.vector() == (u**2).vector() + True + """ # First get the subspace spanned by the powers of myself... V = self.span_of_powers() @@ -187,6 +224,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # b1 is what we get if we apply that matrix to b1. The # second row of the right multiplication matrix by b1 # is what we get when we apply that matrix to b2... + # + # IMPORTANT: this assumes that all vectors are COLUMN + # vectors, unlike our superclass (which uses row vectors). for b_left in V.basis(): eja_b_left = self.parent()(b_left) # Multiply in the original EJA, but then get the @@ -324,6 +364,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): """ Find an idempotent in the associative subalgebra I generate using Proposition 2.3.5 in Baes. + + TESTS:: + + sage: set_random_seed() + sage: J = eja_rn(5) + sage: c = J.random_element().subalgebra_idempotent() + sage: c^2 == c + True + sage: J = eja_ln(5) + sage: c = J.random_element().subalgebra_idempotent() + sage: c^2 == c + True + """ if self.is_nilpotent(): raise ValueError("this only works with non-nilpotent elements!") @@ -353,6 +406,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # subspace... or do we? Can't we just solve, knowing that # A(c) = u^(s+1) should have a solution in the big space, # too? + # + # Beware, solve_right() means that we're using COLUMN vectors. + # Our FiniteDimensionalAlgebraElement superclass uses rows. u_next = u**(s+1) A = u_next.matrix() c_coordinates = A.solve_right(u_next.vector()) @@ -362,10 +418,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # # We need the basis for J, but as elements of the parent algebra. # - # - # TODO: this is buggy, but it's probably because the - # multiplication table for the subalgebra is wrong! The - # matrices should be symmetric I bet. basis = [self.parent(v) for v in V.basis()] return self.parent().linear_combination(zip(c_coordinates, basis))