X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=6bc53a172f5bd72ccc3cec7315bb908425160f57;hb=253d2f0d413e4ea64295242411f24673ae8e0b17;hp=fdaccba58a8b99a2f5222054358969ce3e731882;hpb=cef21b24d30d942dbaa542a23aab642c884371f7;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index fdaccba..6bc53a1 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -652,9 +652,9 @@ def random_eja(): Euclidean Jordan algebra of degree... """ - n = ZZ.random_element(1,10).abs() - constructor = choice([eja_rn, eja_ln, eja_sn]) - return constructor(dimension=n, field=QQ) + n = ZZ.random_element(1,5).abs() + constructor = choice([eja_rn, eja_ln, eja_sn, ComplexHermitianSimpleEJA]) + return constructor(n, field=QQ) @@ -709,7 +709,7 @@ def _multiplication_table_from_matrix_basis(basis): S = [ vec2mat(b) for b in W.basis() ] Qs = [] - for s in basis: + for s in S: # Brute force the multiplication-by-s matrix by looping # through all elements of the basis and doing the computation # to find out what the corresponding row should be. BEWARE: @@ -718,10 +718,10 @@ def _multiplication_table_from_matrix_basis(basis): # constructor uses ROW vectors and not COLUMN vectors. That's # why we're computing rows here and not columns. Q_rows = [] - for t in basis: + for t in S: this_row = mat2vec((s*t + t*s)/2) Q_rows.append(W.coordinates(this_row)) - Q = matrix(field,Q_rows) + Q = matrix(field, W.dimension(), Q_rows) Qs.append(Q) return Qs @@ -758,7 +758,48 @@ def _embed_complex_matrix(M): a = z.real() b = z.imag() blocks.append(matrix(field, 2, [[a,-b],[b,a]])) - return block_matrix(field, n, blocks) + + # We can drop the imaginaries here. + return block_matrix(field.base_ring(), n, blocks) + + +def _unembed_complex_matrix(M): + """ + The inverse of _embed_complex_matrix(). + + EXAMPLES:: + + sage: A = matrix(QQ,[ [ 1, 2, 3, 4], + ....: [-2, 1, -4, 3], + ....: [ 9, 10, 11, 12], + ....: [-10, 9, -12, 11] ]) + sage: _unembed_complex_matrix(A) + [ -2*i + 1 -4*i + 3] + [ -10*i + 9 -12*i + 11] + """ + n = ZZ(M.nrows()) + if M.ncols() != n: + raise ArgumentError("the matrix 'M' must be square") + if not n.mod(2).is_zero(): + raise ArgumentError("the matrix 'M' must be a complex embedding") + + F = QuadraticField(-1, 'i') + i = F.gen() + + # Go top-left to bottom-right (reading order), converting every + # 2-by-2 block we see to a single complex element. + elements = [] + for k in xrange(n/2): + for j in xrange(n/2): + submat = M[2*k:2*k+2,2*j:2*j+2] + if submat[0,0] != submat[1,1]: + raise ArgumentError('bad real submatrix') + if submat[0,1] != -submat[1,0]: + raise ArgumentError('bad imag submatrix') + z = submat[0,0] + submat[1,0]*i + elements.append(z) + + return matrix(F, n/2, elements) def RealSymmetricSimpleEJA(n): @@ -769,14 +810,23 @@ def RealSymmetricSimpleEJA(n): """ pass -def ComplexHermitianSimpleEJA(n): +def ComplexHermitianSimpleEJA(n, field=QQ): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, and the real-part-of-trace inner product. It has dimension `n^2 over the reals. """ - pass + F = QuadraticField(-1, 'i') + i = F.gen() + S = _real_symmetric_basis(n, field=F) + T = [] + for s in S: + T.append(s) + T.append(i*s) + embed_T = [ _embed_complex_matrix(t) for t in T ] + Qs = _multiplication_table_from_matrix_basis(embed_T) + return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n) def QuaternionHermitianSimpleEJA(n): """