X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=44ec225b35e4468dd34661983e186e2c429652dc;hb=7f42e75f446f44edb8c28d1c96260ae1986802f5;hp=4fb5f9b4a22b9e0184ca6d2e4640717321c1efc2;hpb=3d7151570d57d56b6e19a3522d6415ed29a3b0d9;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 4fb5f9b..44ec225 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -88,6 +88,55 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): + @cached_method + def _charpoly_coeff(self, i): + """ + Return the coefficient polynomial "a_{i}" of this algebra's + general characteristic polynomial. + + Having this be a separate cached method lets us compute and + store the trace/determinant (a_{r-1} and a_{0} respectively) + separate from the entire characteristic polynomial. + """ + (A_of_x, x) = self._charpoly_matrix() + R = A_of_x.base_ring() + A_cols = A_of_x.columns() + A_cols[i] = (x**self.rank()).vector() + numerator = column_matrix(A_of_x.base_ring(), A_cols).det() + denominator = A_of_x.det() + + # We're relying on the theory here to ensure that each a_i is + # indeed back in R, and the added negative signs are to make + # the whole charpoly expression sum to zero. + return R(-numerator/denominator) + + + @cached_method + def _charpoly_matrix(self): + """ + Compute the matrix whose entries A_ij are polynomials in + X1,...,XN. This same matrix is used in more than one method and + it's not so fast to construct. + """ + r = self.rank() + n = self.dimension() + + # Construct a new algebra over a multivariate polynomial ring... + names = ['X' + str(i) for i in range(1,n+1)] + R = PolynomialRing(self.base_ring(), names) + J = FiniteDimensionalEuclideanJordanAlgebra(R, + self._multiplication_table, + rank=r) + + idmat = identity_matrix(J.base_ring(), n) + + x = J(vector(R, R.gens())) + l1 = [column_matrix((x**k).vector()) for k in range(r)] + l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)] + A_of_x = block_matrix(R, 1, n, (l1 + l2)) + return (A_of_x, x) + + @cached_method def characteristic_polynomial(self): """ @@ -107,47 +156,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): r = self.rank() n = self.dimension() - # Now switch to the polynomial rings. - names = ['X' + str(i) for i in range(1,n+1)] - R = PolynomialRing(self.base_ring(), names) - J = FiniteDimensionalEuclideanJordanAlgebra(R, - self._multiplication_table, - rank=r) - - def e(k): - # The coordinates of e_k with respect to the basis B. - # But, the e_k are elements of B... - return identity_matrix(J.base_ring(), n).column(k-1).column() - - # A matrix implementation 1 - x = J(vector(R, R.gens())) - l1 = [column_matrix((x**k).vector()) for k in range(r)] - l2 = [e(k) for k in range(r+1, n+1)] - A_of_x = block_matrix(1, n, (l1 + l2)) - xr = (x**r).vector() - a = [] - denominator = A_of_x.det() # This is constant - for i in range(n): - A_cols = A_of_x.columns() - A_cols[i] = xr - numerator = column_matrix(A_of_x.base_ring(), A_cols).det() - ai = numerator/denominator - a.append(ai) + # The list of coefficient polynomials a_1, a_2, ..., a_n. + a = [ self._charpoly_coeff(i) for i in range(n) ] # We go to a bit of trouble here to reorder the # indeterminates, so that it's easier to evaluate the # characteristic polynomial at x's coordinates and get back # something in terms of t, which is what we want. + R = a[0].parent() S = PolynomialRing(self.base_ring(),'t') t = S.gen(0) S = PolynomialRing(S, R.variable_names()) t = S(t) - # We're relying on the theory here to ensure that each entry - # a[i] is indeed back in R, and the added negative signs are - # to make the whole expression sum to zero. - a = [R(-ai) for ai in a] # corresponds to powerx x^0 through x^(r-1) - # Note: all entries past the rth should be zero. The # coefficient of the highest power (x^r) is 1, but it doesn't # appear in the solution vector which contains coefficients