X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=2ec45cf537661f359ef6cf4e34c578c238f80b31;hb=b479f3bb0d3aae8c598a6ec6459688c4be3202af;hp=603ef29021d41f53404a84513c2d854f8e4a8c64;hpb=6b8e20c25e2dcdf4790a53664223fdce9c8416e9;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 603ef29..2ec45cf 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -199,7 +199,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): # It's an algebra of polynomials in one element, and EJAs # are power-associative. - return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True) + # + # TODO: choose generator names intelligently. + return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f') def minimal_polynomial(self): @@ -318,6 +320,57 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): return elt.is_nilpotent() + def subalgebra_idempotent(self): + """ + Find an idempotent in the associative subalgebra I generate + using Proposition 2.3.5 in Baes. + """ + if self.is_nilpotent(): + raise ValueError("this only works with non-nilpotent elements!") + + V = self.span_of_powers() + J = self.subalgebra_generated_by() + # Mis-design warning: the basis used for span_of_powers() + # and subalgebra_generated_by() must be the same, and in + # the same order! + u = J(V.coordinates(self.vector())) + + # The image of the matrix of left-u^m-multiplication + # will be minimal for some natural number s... + s = 0 + minimal_dim = V.dimension() + for i in xrange(1, V.dimension()): + this_dim = (u**i).matrix().image().dimension() + if this_dim < minimal_dim: + minimal_dim = this_dim + s = i + + # Now minimal_matrix should correspond to the smallest + # non-zero subspace in Baes's (or really, Koecher's) + # proposition. + # + # However, we need to restrict the matrix to work on the + # subspace... or do we? Can't we just solve, knowing that + # A(c) = u^(s+1) should have a solution in the big space, + # too? + u_next = u**(s+1) + A = u_next.matrix() + c_coordinates = A.solve_right(u_next.vector()) + + # Now c_coordinates is the idempotent we want, but it's in + # the coordinate system of the subalgebra. + # + # We need the basis for J, but as elements of the parent algebra. + # + # + # TODO: this is buggy, but it's probably because the + # multiplication table for the subalgebra is wrong! The + # matrices should be symmetric I bet. + basis = [self.parent(v) for v in V.basis()] + return self.parent().linear_combination(zip(c_coordinates, basis)) + + + def characteristic_polynomial(self): return self.matrix().characteristic_polynomial()