X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feuclidean_jordan_algebra.py;h=0b6b15da68fd4404f69ce094f4f96d07ad2c6adc;hb=4b1bdeb8c097e6c162cb0a32c07ba2740d89b1e5;hp=a0c072bb13bfdac56a3389b4463ed37e7793fafd;hpb=94eadcdcc061b299f5be5bce1450b94bbd7bfa39;p=sage.d.git diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index a0c072b..0b6b15d 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -5,13 +5,104 @@ are used in optimization, and have some additional nice methods beyond what can be supported in a general Jordan Algebra. """ -from sage.all import * - -def eja_minimal_polynomial(x): - """ - Return the minimal polynomial of ``x`` in its parent EJA - """ - return x._x.matrix().minimal_polynomial() +from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra +from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement + +class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra): + @staticmethod + def __classcall__(cls, field, mult_table, names='e', category=None): + fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls) + return fda.__classcall_private__(cls, + field, + mult_table, + names, + category) + + def __init__(self, field, mult_table, names='e', category=None): + fda = super(FiniteDimensionalEuclideanJordanAlgebra, self) + fda.__init__(field, mult_table, names, category) + + + def _repr_(self): + """ + Return a string representation of ``self``. + """ + return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring()) + + def rank(self): + """ + Return the rank of this EJA. + """ + raise NotImplementedError + + + class Element(FiniteDimensionalAlgebraElement): + """ + An element of a Euclidean Jordan algebra. + + Since EJAs are commutative, the "right multiplication" matrix is + also the left multiplication matrix and must be symmetric:: + + sage: set_random_seed() + sage: J = eja_ln(5) + sage: J.random_element().matrix().is_symmetric() + True + + """ + + def __pow__(self, n): + """ + Return ``self`` raised to the power ``n``. + + Jordan algebras are always power-associative; see for + example Faraut and Koranyi, Proposition II.1.2 (ii). + """ + A = self.parent() + if n == 0: + return A.one() + elif n == 1: + return self + else: + return A.element_class(A, self.vector()*(self.matrix()**(n-1))) + + + def span_of_powers(self): + """ + Return the vector space spanned by successive powers of + this element. + """ + # The dimension of the subalgebra can't be greater than + # the big algebra, so just put everything into a list + # and let span() get rid of the excess. + V = self.vector().parent() + return V.span( (self**d).vector() for d in xrange(V.dimension()) ) + + + def degree(self): + """ + Compute the degree of this element the straightforward way + according to the definition; by appending powers to a list + and figuring out its dimension (that is, whether or not + they're linearly dependent). + + EXAMPLES:: + + sage: J = eja_ln(4) + sage: J.one().degree() + 1 + sage: e0,e1,e2,e3 = J.gens() + sage: (e0 - e1).degree() + 2 + + """ + return self.span_of_powers().dimension() + + + def minimal_polynomial(self): + return self.matrix().minimal_polynomial() + + def characteristic_polynomial(self): + return self.matrix().characteristic_polynomial() def eja_rn(dimension, field=QQ): @@ -47,16 +138,12 @@ def eja_rn(dimension, field=QQ): Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i)) for i in xrange(dimension) ] - # Assuming associativity is wrong here, but it works to - # temporarily trick the Jordan algebra constructor into using the - # multiplication table. - A = FiniteDimensionalAlgebra(field,Qs,assume_associative=True) - return JordanAlgebra(A) + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs) def eja_ln(dimension, field=QQ): """ - Return the Jordan algebra corresponding to the Lorenzt "ice cream" + Return the Jordan algebra corresponding to the Lorentz "ice cream" cone of the given ``dimension``. EXAMPLES: @@ -101,8 +188,4 @@ def eja_ln(dimension, field=QQ): Qi[0,0] = Qi[0,0] * ~field(2) Qs.append(Qi) - # Assuming associativity is wrong here, but it works to - # temporarily trick the Jordan algebra constructor into using the - # multiplication table. - A = FiniteDimensionalAlgebra(field,Qs,assume_associative=True) - return JordanAlgebra(A) + return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)