X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=a4328610e5e41db689455828bd0d8988225e745b;hb=e8599960ef47e5a5af8aca360a041d30584f6c3f;hp=6f8cab6d8019dcbba0be1e81c3872a7ba738f807;hpb=a46720db62543983ab375654dee211ca844ac46c;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 6f8cab6..a432861 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -1,7 +1,44 @@ from sage.functions.other import sqrt +from sage.structure.element import is_Matrix from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector +def _charpoly_sage_input(s): + r""" + Helper function that you can use on the string output from sage + to convert a charpoly coefficient into the corresponding input + to be cached. + + SETUP:: + + sage: from mjo.eja.eja_algebra import JordanSpinEJA + sage: from mjo.eja.eja_utils import _charpoly_sage_input + + EXAMPLES:: + + sage: J = JordanSpinEJA(4,QQ) + sage: a = J._charpoly_coefficients() + sage: a[0] + X1^2 - X2^2 - X3^2 - X4^2 + sage: _charpoly_sage_input(str(a[0])) + 'X[0]**2 - X[1]**2 - X[2]**2 - X[3]**2' + + """ + import re + + exponent_out = r"\^" + exponent_in = r"**" + + digit_out = r"X([0-9]+)" + + def replace_digit(m): + # m is a match object + return "X[" + str(int(m.group(1)) - 1) + "]" + + s = re.sub(exponent_out, exponent_in, s) + return re.sub(digit_out, replace_digit, s) + + def _scale(x, alpha): r""" Scale the vector, matrix, or cartesian-product-of-those-things @@ -106,21 +143,21 @@ def _all2list(x): [3, 4, 1, 0, 0, 0, 0, 0, 0, 0] """ - if hasattr(x, 'list') and hasattr(x, 'to_vector'): - # This avoids calling to_vector() on a matrix algebra with - # e.g. quaternions where the returned vector is of the wrong - # length (three instead of four) because the quaternions don't - # know how many generators they have. - return _all2list(x.list()) - if hasattr(x, 'to_vector'): # This works on matrices of e.g. octonions directly, without # first needing to convert them to a list of octonions and # then recursing down into the list. It also avoids the wonky # list(x) when x is an element of a CFM. I don't know what it - # returns but it aint the coordinates. This will fall through - # to the iterable case the next time around. - return _all2list(x.to_vector()) + # returns but it aint the coordinates. We don't recurse + # because vectors can only contain ring elements as entries. + return x.to_vector().list() + + if is_Matrix(x): + # This sucks, but for performance reasons we don't want to + # call _all2list recursively on the contents of a matrix + # when we don't have to (they only contain ring elements + # as entries) + return x.list() try: xl = list(x) @@ -131,7 +168,7 @@ def _all2list(x): # Avoid the retardation of list(QQ(1)) == [1]. return [x] - return sum(list( map(_all2list, xl) ), []) + return sum( map(_all2list, xl) , [])