X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=8422fbff3c3a3f1523a84708ee659bd605da7ffe;hb=71ed5e9dc86ef368e81e13122aad6046bf056a28;hp=6690a80d395f000e3d8e588b3c0d407f8b7678c6;hpb=85b888f341dc02801ea19a95cd521676bb9c252a;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 6690a80..8422fbf 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -1,6 +1,4 @@ -from sage.functions.other import sqrt -from sage.matrix.constructor import matrix -from sage.modules.free_module_element import vector +from sage.structure.element import is_Matrix def _scale(x, alpha): r""" @@ -54,7 +52,9 @@ def _all2list(x): SETUP:: sage: from mjo.eja.eja_utils import _all2list - sage: from mjo.octonions import Octonions, OctonionMatrixAlgebra + sage: from mjo.hurwitz import (QuaternionMatrixAlgebra, + ....: Octonions, + ....: OctonionMatrixAlgebra) EXAMPLES:: @@ -86,15 +86,39 @@ def _all2list(x): sage: _all2list(OctonionMatrixAlgebra(1).one()) [1, 0, 0, 0, 0, 0, 0, 0] + :: + + sage: _all2list(QuaternionAlgebra(QQ, -1, -1).one()) + [1, 0, 0, 0] + sage: _all2list(QuaternionMatrixAlgebra(1).one()) + [1, 0, 0, 0] + + :: + + sage: V1 = VectorSpace(QQ,2) + sage: V2 = OctonionMatrixAlgebra(1,field=QQ) + sage: C = cartesian_product([V1,V2]) + sage: x1 = V1([3,4]) + sage: y1 = V2.one() + sage: _all2list(C( (x1,y1) )) + [3, 4, 1, 0, 0, 0, 0, 0, 0, 0] + """ if hasattr(x, 'to_vector'): # This works on matrices of e.g. octonions directly, without # first needing to convert them to a list of octonions and # then recursing down into the list. It also avoids the wonky # list(x) when x is an element of a CFM. I don't know what it - # returns but it aint the coordinates. This will fall through - # to the iterable case the next time around. - return _all2list(x.to_vector()) + # returns but it aint the coordinates. We don't recurse + # because vectors can only contain ring elements as entries. + return x.to_vector().list() + + if is_Matrix(x): + # This sucks, but for performance reasons we don't want to + # call _all2list recursively on the contents of a matrix + # when we don't have to (they only contain ring elements + # as entries) + return x.list() try: xl = list(x) @@ -105,22 +129,15 @@ def _all2list(x): # Avoid the retardation of list(QQ(1)) == [1]. return [x] - return sum(list( map(_all2list, xl) ), []) + return sum( map(_all2list, xl) , []) - -def _mat2vec(m): - return vector(m.base_ring(), m.list()) - -def _vec2mat(v): - return matrix(v.base_ring(), sqrt(v.degree()), v.list()) - def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized - vectors over the smallest extention ring containing the necessary - roots. + vectors over the same base ring, which means that your base ring + needs to contain the appropriate roots. SETUP:: @@ -128,11 +145,21 @@ def gram_schmidt(v, inner_product=None): EXAMPLES: + If you start with an orthonormal set, you get it back. We can use + the rationals here because we don't need any square roots:: + + sage: v1 = vector(QQ, (1,0,0)) + sage: v2 = vector(QQ, (0,1,0)) + sage: v3 = vector(QQ, (0,0,1)) + sage: v = [v1,v2,v3] + sage: gram_schmidt(v) == v + True + The usual inner-product and norm are default:: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(2,1,-1)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) @@ -149,11 +176,11 @@ def gram_schmidt(v, inner_product=None): orthonormal with respect to that (and not the usual inner product):: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(2,1,-1)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(2,1,-1)) sage: v = [v1,v2,v3] - sage: B = matrix(QQ, [ [6, 4, 2], + sage: B = matrix(AA, [ [6, 4, 2], ....: [4, 5, 4], ....: [2, 4, 9] ]) sage: ip = lambda x,y: (B*x).inner_product(y) @@ -171,18 +198,18 @@ def gram_schmidt(v, inner_product=None): This Gram-Schmidt routine can be used on matrices as well, so long as an appropriate inner-product is provided:: - sage: E11 = matrix(QQ, [ [1,0], + sage: E11 = matrix(AA, [ [1,0], ....: [0,0] ]) - sage: E12 = matrix(QQ, [ [0,1], + sage: E12 = matrix(AA, [ [0,1], ....: [1,0] ]) - sage: E22 = matrix(QQ, [ [0,0], + sage: E22 = matrix(AA, [ [0,0], ....: [0,1] ]) - sage: I = matrix.identity(QQ,2) + sage: I = matrix.identity(AA,2) sage: trace_ip = lambda X,Y: (X*Y).trace() sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip) [ - [1 0] [ 0 1/2*sqrt(2)] [0 0] - [0 0], [1/2*sqrt(2) 0], [0 1] + [1 0] [ 0 0.7071067811865475?] [0 0] + [0 0], [0.7071067811865475? 0], [0 1] ] It even works on Cartesian product spaces whose factors are vector @@ -211,16 +238,23 @@ def gram_schmidt(v, inner_product=None): Ensure that zero vectors don't get in the way:: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(0,0,0)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(0,0,0)) sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True """ if inner_product is None: inner_product = lambda x,y: x.inner_product(y) - norm = lambda x: inner_product(x,x).sqrt() + def norm(x): + ip = inner_product(x,x) + # Don't expand the given field; the inner-product's codomain + # is already correct. For example QQ(2).sqrt() returns sqrt(2) + # in SR, and that will give you weird errors about symbolics + # when what's really going wrong is that you're trying to + # orthonormalize in QQ. + return ip.parent()(ip.sqrt()) v = list(v) # make a copy, don't clobber the input @@ -231,8 +265,6 @@ def gram_schmidt(v, inner_product=None): # cool return v - R = v[0].base_ring() - # Our "zero" needs to belong to the right space for sum() to work. zero = v[0].parent().zero()