X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=8334f516094fcbea657637da037f825c1cf4cbd2;hb=dc92538d3fc92d16c9b6432ad17c37cb0d6b2be9;hp=3942e70811c6d69e59c9581d23f17af05c261dfa;hpb=cf5e64b70869df65c7bb38888de54b1083e60d45;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 3942e70..8334f51 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -1,40 +1,4 @@ -from sage.functions.other import sqrt -from sage.matrix.constructor import matrix -from sage.modules.free_module_element import vector - -def _charpoly_sage_input(s): - r""" - Helper function that you can use on the string output from sage - to convert a charpoly coefficient into the corresponding input - to be cached. - - SETUP:: - - sage: from mjo.eja.eja_utils import _charpoly_sage_input - - EXAMPLES:: - - sage: J = JordanSpinEJA(4,QQ) - sage: J._charpoly_coefficients()[0] - X1^2 - X2^2 - X3^2 - X4^2 - sage: _charpoly_sage_input("X1^2 - X2^2 - X3^2 - X4^2") - 'X[0]**2 - X[1]**2 - X[2]**2 - X[3]**2' - - """ - import re - - exponent_out = r"\^" - exponent_in = r"**" - - digit_out = r"X([0-9]+)" - - def replace_digit(m): - # m is a match object - return "X[" + str(int(m.group(1)) - 1) + "]" - - s = re.sub(exponent_out, exponent_in, s) - return re.sub(digit_out, replace_digit, s) - +from sage.structure.element import is_Matrix def _scale(x, alpha): r""" @@ -145,9 +109,16 @@ def _all2list(x): # first needing to convert them to a list of octonions and # then recursing down into the list. It also avoids the wonky # list(x) when x is an element of a CFM. I don't know what it - # returns but it aint the coordinates. This will fall through - # to the iterable case the next time around. - return _all2list(x.to_vector()) + # returns but it aint the coordinates. We don't recurse + # because vectors can only contain ring elements as entries. + return x.to_vector().list() + + if is_Matrix(x): + # This sucks, but for performance reasons we don't want to + # call _all2list recursively on the contents of a matrix + # when we don't have to (they only contain ring elements + # as entries) + return x.list() try: xl = list(x) @@ -158,16 +129,9 @@ def _all2list(x): # Avoid the retardation of list(QQ(1)) == [1]. return [x] - return sum(list( map(_all2list, xl) ), []) - + return sum( map(_all2list, xl) , []) -def _mat2vec(m): - return vector(m.base_ring(), m.list()) - -def _vec2mat(v): - return matrix(v.base_ring(), sqrt(v.degree()), v.list()) - def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be @@ -281,54 +245,40 @@ def gram_schmidt(v, inner_product=None): sage: len(gram_schmidt(v)) == 2 True """ + if len(v) == 0: + # cool + return v + + V = v[0].parent() + if inner_product is None: inner_product = lambda x,y: x.inner_product(y) + def norm(x): - ip = inner_product(x,x) # Don't expand the given field; the inner-product's codomain # is already correct. For example QQ(2).sqrt() returns sqrt(2) # in SR, and that will give you weird errors about symbolics # when what's really going wrong is that you're trying to # orthonormalize in QQ. - return ip.parent()(ip.sqrt()) - - v = list(v) # make a copy, don't clobber the input - - # Drop all zero vectors before we start. - v = [ v_i for v_i in v if not v_i.is_zero() ] - - if len(v) == 0: - # cool - return v - - R = v[0].base_ring() - - # Our "zero" needs to belong to the right space for sum() to work. - zero = v[0].parent().zero() + return V.base_ring()(inner_product(x,x).sqrt()) sc = lambda x,a: a*x - if hasattr(v[0], 'cartesian_factors'): + if hasattr(V, 'cartesian_factors'): # Only use the slow implementation if necessary. sc = _scale def proj(x,y): + # project y onto the span of {x} return sc(x, (inner_product(x,y)/inner_product(x,x))) - # First orthogonalize... - for i in range(1,len(v)): - # Earlier vectors can be made into zero so we have to ignore them. - v[i] -= sum( (proj(v[j],v[i]) - for j in range(i) - if not v[j].is_zero() ), - zero ) + def normalize(x): + return sc(x, ~norm(x)) - # And now drop all zero vectors again if they were "orthogonalized out." - v = [ v_i for v_i in v if not v_i.is_zero() ] + v_out = [] # make a copy, don't clobber the input - # Just normalize. If the algebra is missing the roots, we can't add - # them here because then our subalgebra would have a bigger field - # than the superalgebra. - for i in range(len(v)): - v[i] = sc(v[i], ~norm(v[i])) + for (i, v_i) in enumerate(v): + ortho_v_i = v_i - V.sum( proj(v_out[j],v_i) for j in range(i) ) + if not ortho_v_i.is_zero(): + v_out.append(normalize(ortho_v_i)) - return v + return v_out