X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Feja%2Feja_utils.py;h=832dcef1fac0baa573b4883bc4e2ddd3fbfd55a8;hb=ff8c9b19da5ed821366a491a95b4f6c946f315ae;hp=38e75761dab0394f3aa5e6e3016aed7c0edebbc8;hpb=839b90b46009aeb42d2615884972949664d154ad;p=sage.d.git diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index 38e7576..832dcef 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -2,6 +2,45 @@ from sage.functions.other import sqrt from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector +def _scale(x, alpha): + r""" + Scale the vector, matrix, or cartesian-product-of-those-things + ``x`` by ``alpha``. + + This works around the inability to scale certain elements of + Cartesian product spaces, as reported in + + https://trac.sagemath.org/ticket/31435 + + ..WARNING: + + This will do the wrong thing if you feed it a tuple or list. + + SETUP:: + + sage: from mjo.eja.eja_utils import _scale + + EXAMPLES:: + + sage: v = vector(QQ, (1,2,3)) + sage: _scale(v,2) + (2, 4, 6) + sage: m = matrix(QQ, [[1,2],[3,4]]) + sage: M = cartesian_product([m.parent(), m.parent()]) + sage: _scale(M((m,m)), 2) + ([2 4] + [6 8], [2 4] + [6 8]) + + """ + if hasattr(x, 'cartesian_factors'): + P = x.parent() + return P(tuple( _scale(x_i, alpha) + for x_i in x.cartesian_factors() )) + else: + return x*alpha + + def _all2list(x): r""" Flatten a vector, matrix, or cartesian product of those things @@ -160,18 +199,16 @@ def gram_schmidt(v, inner_product=None): R = v[0].base_ring() - # Define a scaling operation that can be used on tuples. - # Oh and our "zero" needs to belong to the right space. - scale = lambda x,alpha: x*alpha + # Our "zero" needs to belong to the right space for sum() to work. zero = v[0].parent().zero() - if hasattr(v[0], 'cartesian_factors'): - P = v[0].parent() - scale = lambda x,alpha: P(tuple( x_i*alpha - for x_i in x.cartesian_factors() )) + sc = lambda x,a: a*x + if hasattr(v[0], 'cartesian_factors'): + # Only use the slow implementation if necessary. + sc = _scale def proj(x,y): - return scale(x, (inner_product(x,y)/inner_product(x,x))) + return sc(x, (inner_product(x,y)/inner_product(x,x))) # First orthogonalize... for i in range(1,len(v)): @@ -188,6 +225,6 @@ def gram_schmidt(v, inner_product=None): # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): - v[i] = scale(v[i], ~norm(v[i])) + v[i] = sc(v[i], ~norm(v[i])) return v